Summerville Borough Water Treatment

REDBANK CREEK ENGINEERING, INC.

Meet Our Team!

<u>Construction</u> Management

- David Samulevich
- Austin Matase

Sustainability

- Joe Zappitelli
- Isaiah Spencer

Environmental

- Sandya Rajan
- Shannon Kronz
- Patrick Kane
- Alex Jadlowiec

Structural

Rahul Ramanna

Presentation Outline

Overview

- Introduction/Background
- Existing Facilities/ Need for Project
- Project Goals
- •Analysis Criteria
- Design Alternatives
- •Summary
- Proposed Design

Project Location: Summerville, PA

- 90 minutes northeast of Pittsburgh
- Population (2014): 522
- Low income community
- Median household income:
 \$38,874

Project Location: Summerville, PA

- Jefferson County, PA
- Redbank Creek runs through center of town
- Main Road: PA State Route 28

Our Client: Summerville Borough Municipal Authority

- Services 210 connections
- The only industrial customer is Glen-Gery Brick company
- Raw water source is two springs
- Summerville's drinking water demand: 53,000 GPD
- Residential Customers 20,000 GPD
- Glen Gery Brick Factory 33,000 GPD

- Springs are depleted during the summer months and cannot meet 53,000 GPD demand for residents
 + industrial use
- Current well is unusable because of high levels of barium, iron, and manganese

- Glen-Gery brick factory is the keystone of Summerville's economy so water demand for industrial use must be met
- Factory puts high stress on the water supply by using more than half of the town's daily use

- The goal of this project is to engineer a dependable source of drinking water for Summerville Borough that is:
 - 1. Affordable
 - 2. Resilient
 - 3. Sustainable
- Objective: to design and evaluate 3 alternatives

Alternative 1: Groundwater Source

- Treat well water for distribution
- Drill an additional well

Alternative 2: Surface Water Source

• Source water from Redbank Creek and treat for distribution

Alternative 3: Recycled Wastewater

- Recycle effluent from WWTP to Brick Factory for industrial use only
- Storage tank will be built to hold excess water from WWTP

Sustainability Initiatives

• Sustainable infrastructure is important in protecting natural resources and the environment, but in some cases can be a more effective use of financial resources

• Criteria and certifications for sustainability have become more popular like:

- LEED (Benedum Hall is LEED Gold!)
- Net Zero Energy
- Envision
- For this project, Envision Criteria was used to assess sustainability

- Framework to assess sustainability of infrastructure projects
 - Established in 2012 by ISI
- American
 Infrastructure Protection Act
 2018
- Total projects in US: ~60
- 3 verified projects concerning water treatment

Envision: Example Questions

Criteria	What does it measure?	Example Question	# of Points Available
Quality of Life	Community, social health, and wellbeing	Are relevant community needs, goals and issues being addressed?	181
Leadership	Traditional sustainability actions + collaborative leadership	Will the plan cover all aspects of long-term monitoring and maintenance?	121
Resource Allocation	Quantity, source, and characteristics of resource materials	Will the project design monitor water performance during operations?	182
Natural World	Understand and minimize negative impacts, explore synergy with world	Will the project maintain or enhance water quality?	203
Climate and Resilience	Minimize emissions and ensure resilience	Will the project team develop a Climate Impact Assessment and Adaptation Plan?	122

Alternative 1

Treat well water for distribution and drill an additional well

Overview

- Groundwater Contaminants
- Analyze Treatment Options
- New Well for Additional Supply
- Layout/Design
- Supply Impact
- Cost

Alternative 1: Groundwater Contaminants

Contaminate	Concentration	EPA Maximum Contaminate Level
Iron	4.80 mg/L	0.3 mg/L
Manganese	0.87 mg/L	0.05 mg/L
Barium	3.4 mg/L	2 mg/L

*Testing data from Moody and Associates and Chemical Solutions

Alternative 1: Groundwater Source

- Existing well
 will be treated
 for Iron,
 Manganese and
 Barium
- Additional well
 will be drilled
 to provide
 resilience for the
 system

- Treatments for Iron & Manganese:
- Aeration
- Chlorine
- Ozone
- Potassium Permanganate & Green Sand
- Treatments for Barium:
- Lime Softening
- Reverse Osmosis
- Ion Exchange

 $3Fe^{2+} + KMnO_4 + 7H_2O \rightarrow 3Fe(OH)_{3(s)} + MnO_{2(s)} + K^+ + 5H^+$

Potassium permanganate dose for oxidation: 0.94 mg/mg Iron [EPA]

Dosage: (0.94 mg/mg Iron)*(4.80 Iron mg/L) = 4.5 mg/L

 $3Mn^{2+} + 2KMnO_4 + 2H_2O \rightarrow 5MnO_{2(s)} + 2K^+ + 4H^+$

Potassium Permanganate dose for oxidation: 1.92 mg/mg Manganese [EPA] Dosage: (1.92 mg/mg Manganese)*(0.87 Manganese mg/L) = 1.7 mg/L ~ 2.0 mg/L

- Ion exchange Use of Strong Acid Cation resin (Water Softener) to precipitate Barium
- Potassium Chloride used as water softener
- Regenerate brine with NaCl

Alternative 1: Existing Well

Alternative 1: Proposed Well

- Length and Size of Additional Pipe: 3,000 ft of 4 in. Pipe
- **Design Flow**: 50,000 gal/day
- Total Dynamic Head from groundwater level:
 270 ft
- Pump Recommendation: 4
 Stage Flint & Walling Pump at each well

Pump Curve

Alternative 1: Supply Impact

• Each day an average of 53,000 gallons of ground water will be pulled from the well

- The new well will relieve stress on the current well and the springs
- Wells are a more reliable source of water

Alternative 1: Construction Cost

Component	Cost
Waterline Installation	\$42,000
Well Drilling	\$16,000
Ion Removal (Ba, Fe, Mn)	\$77,000
Well Pumps	\$7,000
Total Cost	\$142,000

Alternative 2

Source water from Redbank Creek and treat for distribution

Overview

- Surface Water Contaminants
- Treatment Plant Design Options
- Traditional vs. Modular
- Layout/Design
- Supply Impact
- Cost

- Tested for primary and secondary contaminant levels
 - Primary (required by EPA) risk to human health
 - Secondary (recommended by EPA) taste, odor and color
- Manganese and Mercury levels are above EPA standards
- pH = 7.61

Contaminant	EPA MCL or SMCL (mg/L)	Redbank Creek (mg/L)
Barium (Primary)	2.00	0.65
Iron (Secondary)	0.30	0.20
Manganese (Secondary)	0.05	0.31
Mercury (Primary)	0.002	6.84
Lead (Primary)	0.015	0.00

- Treatment System Design Options:
 - 1. Traditional Design: Screens, Rapid

Mix, Flocculation, Sedimentation,

Filtration, Disinfection

2. Proprietary modular treatment system

Alternative 2: Traditional Surface Water Plant

Process	Number	Area/Volume	Detention Time
Screen (40mm)	2	1.5 ft x 1.5 ft	n/a
Screen (20mm)	1	1.5 ft x 1.5 ft	n/a
Rapid Mixing Chamber	2	2.5 ft ³	25 s, G= 800 fps/ft
Flocculation Basin	2	140 ft ³	25 minutes
Sedimentation	2	1000 ft ³	3 hours
Rapid Dual Media Filtration	2	11 ft ² x 10 ft	n/a

Disinfection

- UV System 21.6 mJ/cm² dose will achieve a 4-Log reduction in microorganisms
- Chlorine Residual Metering Pump at 1 mg per liter of effluent

Alternative 2: Traditional Surface Water Plant

Alternative 2: Traditional Surface Water Plant

- Lime/Soda Ash and Ferric Chloride will be added in the rapid mix chambers
 - •Lime/Soda Ash: adjust pH
 - •Ferric Chloride: Begins process of attracting particles too small to be filtered
- Flocculation basin slows down velocity of water and allows time for larger, heavier particles to form
- Sedimentation basin allows for heavier particles to settle while clean water filters out of the top
 - •Impurities at the bottom of the basin are collected by mechanical sweeps
- Rapid Dual Media Filtration removes remaining solid impurities
- UV Disinfection will kill viruses and pathogens
 - Alters their DNA no longer allowing them to reproduce
- Chlorine dosing required by EPA for residual in distribution system

Alternative 2: Modular Surface Water Plant

- Fluence Nirobox Fresh Water
 - Compact, decentralized Surface Water Treatment
 - Operational training and installation provided by Fluence
 - Pressurized unit processes allow unit to be housed in a 40 ft trailer
 - Coagulation and chlorination
 - Hydro-cyclone (Retains solid particles up to 70 um)
 - Disc filtration (Retains solid particles up to 55 um)
 - Ultrafiltration membranes
 - Automatic backwashing

Alternative 2: Additional Considerations

- Testing needs to be continued on the water quality of Redbank Creek, especially for Mercury
- If mercury continues to test significantly higher than PMCL, we will:
 - Add nanofiltration to both the traditional treatment plant design and modular treatment plant
 - Perform pilot tests to ensure that mercury levels will be in accordance with EPA Standards
- If Total Dissolved Solids is > 2000 mg/L:
 - Pretreatment would be required for the modular surface water treatment plant

Alternative 2: Additional Considerations

- Redbank Creek is listed as impaired by the PADEP because of Acid Mine Drainage and Industrial Use
- PADEP TMDL Study
 - Found significant variance in pH (4.0 - 8.0) and heavy metal concentrations (Alum, Iron, Manganese)
- Water quality of Redbank Creek seems to be unpredictable

Alternative 2: System Layout

- Length: 1500 ft of pipe
- Diameter: 4 in.
- Placed 18 in. under water surface
- Total Dynamic Head of 155 feet
- Pump Recommendation: 2

 (Yamada DP-25BPH)
 Pumps in series to meet
 required TDH and Flow

Pump Curve

Alternative 2: Supply Impact

- •Each day an average of 60,000 gallons of surface water will be treated and distributed from Redbank Creek
- •Surface water provides the most resilient source of water
- •Flow of Redbank is 323,095,000 gallons per day, surface water plant would reduce flow .01% per day

Alternative 2: Construction Cost

TRADITIONAL SURFACE WATER TREATMENT PLANT

MODULAR SYSTEM

Component	Cost	Component	Cost
Traditional Surface Water Plant	\$490,000	Fluence Nirobox FW	\$420,000
Waterline Installation	\$21,000	Waterline Installation	\$21,000
Pump with Connection	\$14,000	Pump with Connection	\$14,000
Total Cost	\$525,000	Total Cost	\$455,000

Alternative 3

Recycle Effluent from WWTP to Brick Factory for Industrial Use Only

Overview

- Effluent Contaminants
- Layout/Design
 - Pipeline
 - •Tank
- Cost

Measured Results from the WWTP Effluent:

- **TSS** = 0.0063 mg/L < 30 mg/L
- **BOD5**= 11.1 mg/L < 30 mg/L
- **Turbidity** = 8.65 NTU
- Fecal Coliform: N/M (expected to be in range due to UV disinfection but more testing required)

Based on these results, the effluent would be classified as **Class C Effluent** and can only be used for industrial use

• The spring water would be able to accommodate for fire flow

Alternative 3: Effluent Recycling Standards

PA DEP Class C Industrial Wastewater Reuse Requirements

Paramotor	Treatmen	Monitoring		
Farameter	Monthly Average	Maximum	Frequency	
BOD	< 30 mg/L	45 mg/L	Weekly	
TSS	< 30 mg/L	45 mg/L	Weekly	
Fecal Coliform	< 200/100 mL	800/100 mL	Weekly	

Class C: Industrial Use Only Class B: Industrial + Fire Flow

PA DEP Class B Industrial Wastewater Reuse Requirements

Doromotor	Treatmen	Monitoring		
Parameter	Monthly Average	Maximum	Frequency	
BOD	< 10 mg/L	20 mg/L	Weekly	
Turbidity	< 10 NTU	15 NTU	Continuous	
Fecal Coliform	< 2.2/100 mL	23/100 mL	2/ Week	

REDBANK CREEF

Alternative 3: Recycle Wastewater to Brick Plant

- WWTP Effluent recycled to Glen-Gery Brick Factory for industrial use only
- 100,000 gallon Storage tank will be constructed
- Supply Impact: Effluent of WWTP
 - 30,000-40,000 gpd
- Brick Factory Demand: 33,000 gpd
- Spring Supply: 53,000 gpd
 - Not a reliable source of water

Alternative 3 System Layout

REDBANK CREEF

Alternative 3: Pipeline from WWTP to Storage Tank

- Size/ Length: 3,100 ft of 4 in. Pipe
- Design Flow: 40,000 gal/day
- Total Dynamic Head: 172 ft
- Pump Recommendation: 2 (Yamada DP-25BPH) Pumps in

series to achieve TDH and Flow

Follows decommissioned railroad tracks to the brick factory

Pump Curve

Alternative 3: Pipe from Storage Tank to Factory

- No pump necessary because the major head loss is insignificant compared to elevation head
- Length: 1160 ft
- Size: 4 in.
- Storage tank will be located on Glen-Gery property

Loads Considered in Compliance with AWWA D100 Section 3.1

- Dead Load: 490 psf steel
- Water Load: 62.4 psf
- Roof Design Load
 - Snow Load disregarded due to roof slope being greater than 30 degrees
 - Live load of 15 psf
- Wind Load: From 12.8 psf at base to 14.8 psf at top of tower
- Seismic Load: S1< 0.04g and Ss< 0.15g
 - Design consideration not required

Circular Storage Tower

- Size: 100,000 gallons
- Diameter: 22 ft
- Height of Tank: 35 ft
- Height of Tower: 50 ft
- TCL: 78 ft
- BCL: 50 ft

Member: Tank Roof

- Loading: $DL + L_R$
- Design: Self-supporting cone roof with half inch thickness
- Connection: Butt weld to the conical section

Member: Cylindrical Shell

- Loading: Gravity Loads
- Constraints: Allowable local buckling compressive stress 15000 psi
- Design: Cylindrical shell w/ 1in thickness
- Connection: Butt weld to the base plate

Member: Base Plate

- Loading: Gravity Loads
 - Constraints: Allowable
 local buckling compressive stress 11000 psi
 - Design: Plate with 6 inch thickness
 - Connection: Anchorage bolts to girders

Member: Flexural Members

- Loading: Gravity Loads
- Constraints: Nominal bending moment and shear
- Design: Beams: HSS 20 x 20 x .75
- Girders: HSS 22x22x.875

Member: Columns

- Loading: Gravity + Wind Loads
- Constraints: Axial load and Second Order Moment
- Design: 8 HSS 12x12x.5 columns
- Connection design: Slotted pinned to gusset plates

Member: Braces

- Loading: Lateral Loads
- Constraints: Tension only
- Design: L 6"x6"x.5"
- Connections: Bolted to gusset plate

Member: Compression Struts

- Loading: Lateral Loads
- Constraints: Compression
 Only
- Design: HSS 12x12x.5
- Connections: Slotted pinned to gusset

Alternative 3: Prefabricated Storage Tank

•Cost and Constructability

•Bolted Steel Tank

- 25' dia. x 30' h.
- 100,000 Gallons
- Concrete Foundation Ring
- Compacted Soil Inner Foundation
- Assembled on site

Alternative 3: Construction Cost

Component	Cost
Waterline Installation	\$77 <i>,</i> 000
Pump with Connection	\$14,000
Storage Tank	\$103,000
Total Cost	\$194,000

Selection of Alternative

Overview

- Summary of Current Alternatives
 - Overview
 - Cost
 - Envision scores

Alternative Comparison: Envision Sustainability Scorecard

Category	Alternative 1	Alternative 2	Alternative 3
Quality of Life (QL)	15%	15%	15%
Leadership (LD)	10%	9%	22%
Resource Allocation (RA)	31%	12%	29%
Natural World(NW)	18%	15%	26%
Climate and Resilience (CR)	53%	50%	56%
Total	20% (Bronze)	19% (No award)	30% (Silver)

Alternative Comparison: Envision Highlights

Category	Alternative 1	Alternative 2	Alternative 3
LD 2.1 Pursue By-Product Synergies	0	0	Conserving (12/15)
RA 1.3 Use Recycled Materials	0	Improved (2/14)	Enhanced (5/14)
RA 1.6 <i>Reduce Excavated Materials</i> <i>Taken Off Site</i>	Improved (2/6)	Enhanced (4/6)	Conserving (6/6)
RA 3.1 Protect Freshwater Availability	Superior (9/21)	Superior (9/21)	Superior (9/21)
RA 3.2 <i>Reduce Potable</i> <i>Water Consumption</i>	0	0	Superior (9/21)
NW 1.7 Preserve Greenfields	0	Enhanced (6/23)	Superior (10/23)

Summary of Alternatives

Alternative	Description	Cost	Envision Score	Quantity of Water Produced
1	Source water from wells with Iron, Manganese, and Barium Removal	\$142,000	20% - Bronze	100,000 GPD
2	Source water from Redbank Creek through surface water treatment	\$455,000	19% - No Award	60,000 GPD
3	Recycle WWTP effluent and construct a storage tank to supplement the springs	\$194,000	30% - Silver	86,000 GPD

Proposed Design

Overview

- •Description of design
- •Layout
- •Envision
- •Schedule
- •Cost
- •Funding
- •Financial Impact

- Combination of Groundwater and Recycled Wastewater
 - The springs will be supplemented during the summertime using groundwater from an existing well
 - Groundwater will be treated for Barium, Iron and Manganese
 - Effluent from the WWTP will be recycled to the brick factory for industrial use only
 - Recycling the wastewater will decrease stress put on the wells and springs

Proposed Design: Recycled Wastewater

Proposed Design: Ba, Fe, and Mn Removal

- 2" Greensand Filter
- Flow Rate
 - Peak: 55 GPM
 - Backwash: 55 GPM
- Tank Size: 30' x 72'
- Media
 - Greensand: 15 cu ft
 - Gravel: 350 lbs
- Pipe Size
 - Inlet 2"
 - Outlet 2"
 - Drain 2"

Proposed Design: Envision Scorecard

Category	% Earned	100
Quality of Life (QL)	15	90 80 70
Leadership (LD)	25	60 50 60
Resource Allocation (RA)	33	
Natural World (NW)	26	10 0 Quality of Life Leadership Resource Natural World Climate & Risk
Climate and Resilience (CR)	37	Points Earned Points N/A

28% of Applicable Credits Earned: Envision Bronze

Proposed Design: Envision Highlights

Recycling wastewater to Glen-Gery brick factory

- LD 2.1 Pursue By-Product synergies
- RA 3.1 Protect Freshwater Availability
- RA 3.2 Reduce Potable Water Consumption

Material sourcing

- RA 1.3 Use recycled materials
- RA 1.4 Use regional materials
- RA 1.6 Reduce excavated materials taken off site

Intentional site selection for water storage tank

• NW 1.1 Preserve prime habitat

•Climate and Risk Assessments

• CR 2.1-2.5 Climate & Resilience

Proposed Design: Envision Areas for Improvement

•Explore opportunities to use renewable energy

- RA2.2 Use renewable energy
- CR 1.1 *Reduce greenhouse gas emissions*

•Life cycle assessment and Life-cycle costing

- RA 1.1 Reduce net embodied energy
- CR 1.1 *Reduce greenhouse gas emissions*

Monitoring water and energy systems

- LD 3.1 Plan for long-term monitoring and maintenance
- LD 3.3 Extend useful life
- RA 2.3 Commission and monitor energy systems
- RA 3.3 Monitor water systems

Proposed Design: Construction

- Pipe
 - 4 inch PVC
 - 40-42 inches below grade (frost)
- Trench
 - 48"d x 16"w
 - Utilize trenching machine
 - Approximately 4500 lf
 - 700 ft/day production rate

Proposed Design: Schedule

Proposed Design: Construction Cost

- Final Cost: **\$271,000**
 - •Existing well will be used to decrease cost of construction

Component	Cost
Recycled Wastewater	\$194,000
Groundwater Treatment System (Only Iron, Manganese and Barium Treatment for Existing Well)	\$77 <i>,</i> 000
Total Cost	\$271,000

- Estimated 50% of the project will be covered by grants
 - USDA Rural Development
 - US Department of Community and Economic Development
 - US Department of Commerce- Economic Development Administration
 - Appalachian Regional Commission
- Based on past project in Summerville
 - Remaining costs will be covered by a 20 year loan at 1% Interest

- Loans will need to be repaid by the customers of Summerville Municipal Authority
- Each customer will pay an additional \$3 per month for 20 years

- Summerville, PA has a water source of two springs that are depleted during the summertime and cannot meet residential + industrial demand
- 3 alternatives were examined to supplement or replace the two springs:
 - Groundwater source treating for contaminants
 - Surface water source from Redbank Creek
 - Recycling wastewater from WWTP to Glen-Gery
- Proposed design consisted of treating the existing well for contaminants and recycling the wastewater
 - Well will supplement springs
 - Recycling wastewater will take pressure off springs and well
 - This is the most dependable, affordable, resilient and sustainable solution

We would like to thank our professors, advisors, and partners for their help on this project:

- Professor Sebastian
- $^{\circ}$ Dr. Oyler
- Dr. Casson
- $^\circ\,$ Dr. Vidic
- $^\circ\,$ Dr. Sanchez
- Dr. Khanna
- $^\circ$ Dr. Bilec
- Dr. Malehorn
- Rob Herring
- Dan Slagle
- Summerville Municipal Authority

Any Questions?

Redbank Creek

.

-

	CT	IP ANT ESTIM	Contract N	<u>(</u>)				
			Contract	10000er 2-95	•	.	Page No. 1 of 1	
			Contract Date	c. June 23, 1997				
			Base Contract	t Price: \$22,73	5.00		-	
			Contract for					
				Waterli	ne Installation	n Project		
			Starting Da Time for Co Completion	C te: June 30, 19 ompletion: 45 (Date: August	Contract Peri 1997 Consecutive (13, 1997	od Calendar Day	ys	
	(1)	(2)	(3)	(4)	(5)			
	ltem		Contract	Contract	Estimated	(6) Work	(7)	
	110.	Mobilization and Close Ord	Quantity	Unit Price	Cost	Accepted	(4) x (6)	
	<u> </u>		L.S.	\$2,500.00	\$ 2,500.00	100%	\$ 2,500.00	
	2	Water Main, 2-inch PVC, w/push-on jts	0 L.F.	9.54	0.00	0	0.00	
	3a	Fittings, PVC w/push on jts.	20 Lb.	10.00	200.00	0	0.00	
	30	ritungs w/mechanical jts.	0 Lb.	10.00	0.00	118	1,180.00	
· .		Gate Valves & Valve Box, 3-inch w/mech jts.	1 EA	250.00	250,00	1	250.00	
\rightarrow		Select Backfull, 2RC Aggregate tamped in place	50 C.Y.	12.00	600.00	0	0.00	
		Borough Road Restoration	14 S.Y.	25.00	350.00	0	0.00	
	00	PADUI Shoulder Restoration	200 S.Y.	2.00	400.00	0	0.00	
		Aspnalt Driveway Restoration	25 S.Y.	23.00	575.00	18.72	430.56	
	~	Concrete Driveway Kestoration	25 S.Y.	3.00	75.00	0	0.00	
		Road Crossing	0 S.Y.	6.00	0.00	0	0.00	
		Koad Crossing	37 L.F.	25.00	925.00	0	0.00	
\rightarrow	CO #1	Weter Main A inch BWO	3 C.Y.	100.00	300.00	1	100.00	
			1,500 L.F.	11.04	16,560.00	1,512	16,692.48	
•		TOTAL	XXXXXXXXX	xxxxxxxxx	S 22,		\$21,153.04	
к ^и .			Total due on co	ontract items		\$21,153.04	4	
	1 mc 10	estimate of the amount and an has of and	Value of m	naterial accepte	d, but not	0.0	0	

Estimate

.

Date	Estimate #
4/3/2019	885

			Project
Description	Qty	Cost	Total
Goulds 160L20 20 hp. 6" pump end		4,662.00	4,662.00
20 hp. 6" dual voltage motor		4,436.00	4,436.00
200' of 3" galvanized pipe		4,366.00	4,366.00
200' of 4-3 pump cable		962.00	962.00
fittings		1,000.00	1,000.00
labor	6	150.00	900.00
due to rising cost of materials, prices are subject to c	change without	Subtotal	\$16,326.00
notice, ESTIMATE ONLY		Sales Tax (6.0%)	\$0.00
		Total	\$16,326.00

control punel,\$5,000

Name / Address

Lilly Borough Water Department 421 Main Street Lilly, PA 15938

Ion Exchange system			
1	\$ 30,000.00	ea	\$ 30,000.00
piping	\$ 22,500.00		
total	\$ 52,500.00		
Green Sand Filter			
1	\$ 15,000.00		
Piping	\$ 10,000.00		
	\$ 77,500.00		

Alternative 3

Trenching			Production	700	lf/day		
Foreman	0.25	\$ 84.00	Number of Days	8			
Operator	1	\$ 430.00					
Trencher	1	\$ 1,957.00					
		\$ 2,471.00	Total Cost	\$ 19,768.00	\$ 4.39		
Pipe			Production	380	lf/day		
Foreman	1	\$ 334.80	Number of Days	15			
Laborer	1	\$ 318.80					
Plumber	1	\$ 497.00					
Plumber Apprentice	1	\$ 397.00					
Pipe (If)	5500	\$ 2.78					
		\$ 1,547.60	Total Cost	\$ 38,504.00	\$ 8.56		
				Total	Total + Uncertainty	Total + O&P	
				\$ 58,272.00	\$ 67,012.80	\$ 77,064.72	\$ 17.13
Water Tank							
100,000 gallon							
Bolted Steel							
Cost per Ea	\$ 60,000.00	(Michigan State	Study plus Inflation)				
Foundation							
F 1.1							
Foundation					Cost		
Concrete Ring	4	CY	\$ 100.00	/cy	\$ 400.00		
Steel	56	lb/cy	1.12	/lb	\$ 62.72		
Carpenter foreman	1		\$ 52.70	/day	\$ 210.80		
carpenters	3		\$ 50.70	/day	\$ 608.40		
rodman	1		\$ 54.65	/day	\$ 218.60		
Laborers	2		\$ 39.85	/day	\$ 318.80		
finisher	1		\$ 47.55	/day	\$ 190.20		
conc vibrator	1		\$ 25.60	/day	\$ 25.60		
					\$ 2,035.12		

Remove soil inner ring	12	5 cy		1 we	eek					
1 laborer	\$ 448.80) day		\$	2,244.00					
l operator	\$ 318.80) day		\$	1,594.00					
l 1 cy	\$ 742.00) day		\$	3,710.00					
				\$	7,548.00					
Place compacted foundation	12	5 cy								
2 laborers	\$ 320.00) \$	3,200.00							
l operator	\$ 320.00)\$	1,600.00							
walking compactor	\$ 100.00) \$	500.00							
		\$	5,300.00							
				Tota	I	Tota	al + Uncertainty	Total w/	O&P	
		1		\$	74,883.12	\$	86,115.59	\$	103,338.71	
Mob & Closeout		1		Ś	18.040.34					
		+		-		-				
Alternative 3 Total		+		Tot	tal w/ O&P					
				\$	198,443.77	\$	165,969.57	\$	110,646.38	
		+	360			<u> </u>				
		-		\$	2.62	\$	2.20	\$	307.35	
		-								
Total Proj	\$ 275,943.7	,		Нор	eful grants	\$	150,000.00			
	Cost	ber pe	rson w/ 20	year	loan @1%	\$	2.52			

Alternative 3

F

Diameter:	25 Floor: CONC	RETE Roof: AOS	Type: POTABLE
Height	Capacity	Price	Cost/Gal
15 .	54,000	\$52,600	\$0.97
19	71,000	\$56,300	\$0.79
24	88,000	\$60,200	\$0.68
28	105,000	\$63,600	\$0.61
33	122,000	\$68,900	\$0.57
38	142,000	\$86,500	\$0.61
43	159,000	\$91,400	\$0.57
47	176,000	\$97,300	\$0.55
52	193,000	\$103,400	\$0.54
57	210,000	\$112,700	50.54
61	227,000	\$114.800	\$0.54
66	244,000	\$123,000	\$0.50
70	261,000	\$136.500	\$0.50
75	278,000	\$145,300	\$0.52 \$0.52
79	296,000	\$153,700	\$0.52
84	313,000	\$162,100	\$0.52
89	330,000	\$167,200	\$0.52
93	346,000	\$174,900	\$0.51
98	364,000	\$185,300	\$0.51
102	375,000	\$195.700	\$0.51
		+====;+===	40. 52
Diameter:	25 Floor: GLASS	Roof: AOS	Type: POTABLE
Height	Capacity	Price	Cost (Col
15	57,000	\$60,200	
20	74,000	\$64,500	\$1.00
25	91,000	\$68,300	\$0.87 \$0.75
29	108,000	\$72,700	\$0.75
34	125,000	\$77,100	\$0.67
38	142,000	\$81,700	\$0.52
43	159,000	\$87,600	\$0.58 \$0.55
47	176,000	\$92,500	\$0.55
52	193,000	\$102,100	\$0.55
57	210,000	\$112,000	\$0.55 \$0.57
61	227,000	\$115,500	\$0.53 \$0.51
66	244,000	\$123,000	\$0.51 \$0.51
70	261,000	\$133,400	\$0.50
75	278,000	\$142,800	\$0.51 \$0.51
79	296,000	\$151,800	\$0.51 \$0.51
84	313,000	\$161.200	\$0.51 \$0.51
89	330,000	\$165,400	\$0.50