
Schenley Oval Project

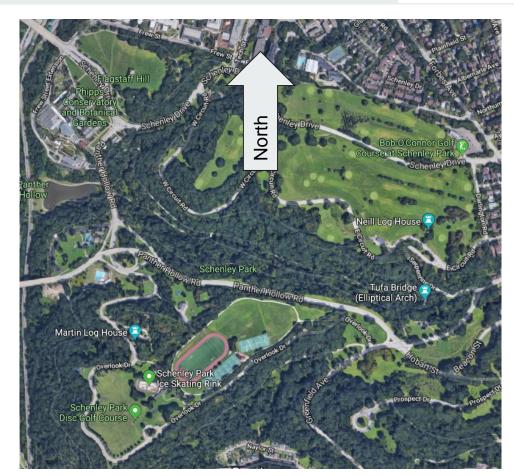
Team Members

- Vincent DiCarolis (Project Leader, Construction Group)
- Jacob Bobak (Construction Group)
- Alex Farris (Structural Group)
- Kaixuan (Kevin) Li (Construction Group)
- Megan McNally (Structural Group)
- Tyler Roman (Construction Group)
- Nathan Sloan (Construction Group)
- Yizhen Yan (Construction Group)
- Jiangnan Zheng (Geotechnical Group)

Presentation Schedule

- Project Background
- Building Model/Utility Line
- Soil/Foundation Analysis
- Structural Analysis
- Cost Estimate
- Risk Analysis
- Scheduling & Staging
- Future Steps

Project Background



Schenley Park

- 456 acre municipal park operated by the Pittsburgh Parks Conservatory and the City of Pittsburgh
- Many of the facilities are provided by the City of Pittsburgh Department of Parks and Recreation (aka Citiparks)
- Located between Oakland, Greenfield, and Squirrel Hill

Schenley Oval

- 1. Disc Golf Course
- 2. Ice Skating Rink
- 3. Playground/Pavilion
- 4. Restrooms
- 5. Soccer Field, Track, Tennis Courts
- 6. Open Field (Used for soccer fields)

Need Assessment

Need:

There is a lack of facilities for use by the public during sporting events at the Schenley Oval

Approach:

- Add a 1 story building at the sports complex at the Schenley Oval
- Provide a rest area for the parents while their kids are playing sports
- Benefits will include:
 - Food Concessions
 - Covered eating and relaxing area
 - View looking out at downtown
 - Storage for sports, kitchen, and other equipment
 - Restrooms

Site Location

- Close proximity to playground for easy supervision
- Nice view of the city
- Short walking distance to the soccer field/track

Public Feedback

- Discussed the scope with Sportsplex users
 - Enjoyed the Project Scope
 - Appropriate location
 - Gained knowledge on demand
 - March through October
 - Estimated 1,000 people during peak hours

Building Code/Zoning Laws

- Park District, P
 - No restrictions due to zoning law setbacks
 - 150' between street and playground
- Allegheny County Health Department
 - Easily cleanable walls, ceiling, and floor
 - 2 separated ADA compliant restrooms
- 2012 IBC used for structural analysis

RULES AND REGULATIONS

ARTICLE III FOOD SAFETY

Building Operations

The building will

- Be open seasonally, (March October)
- Hours will fluctuate around events
- Will be maintained with regular park building maintenance.
- Serving food, we will need an inspection from the Allegheny County Health Department
- The storage can be used for sports equipment, kitchen equipment, etc.

Building Model/Utility Map

Building Layout

- Design developed through discussions with team members, suggestions from Dr. Rizzo and responses from the Survey.
- Current design consists of Five sections

0	Indoor Kitchen	- 750 ft ²
\circ	indoor Kitchen	- / 30

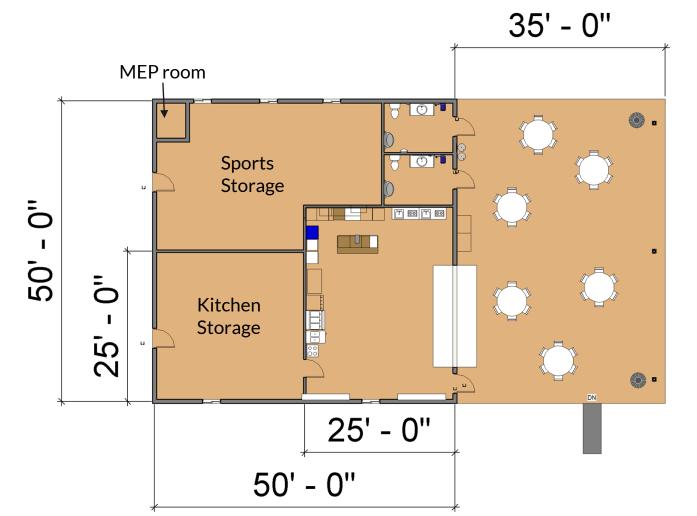
Kitchen Storage room - 625 ft²

Sports Storage rooms - 925 ft²

Outdoor seating area (can be enclosed) - 1750 ft²

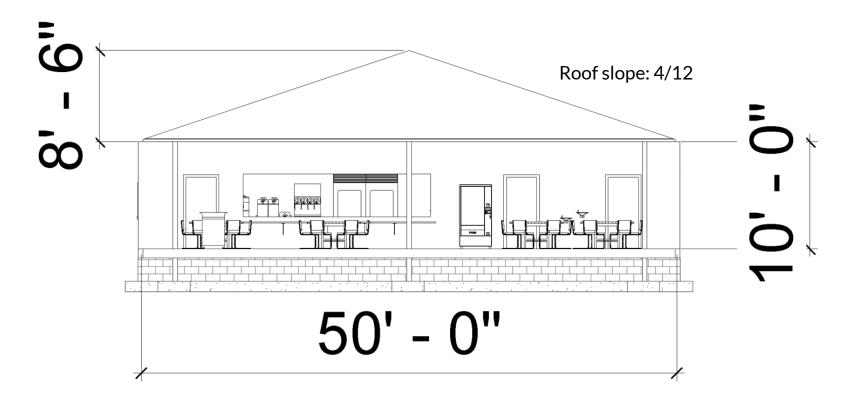
• Restrooms - 250 ft²

Overall dimensions are 85 ft x 50 ft
 - 4250 ft²

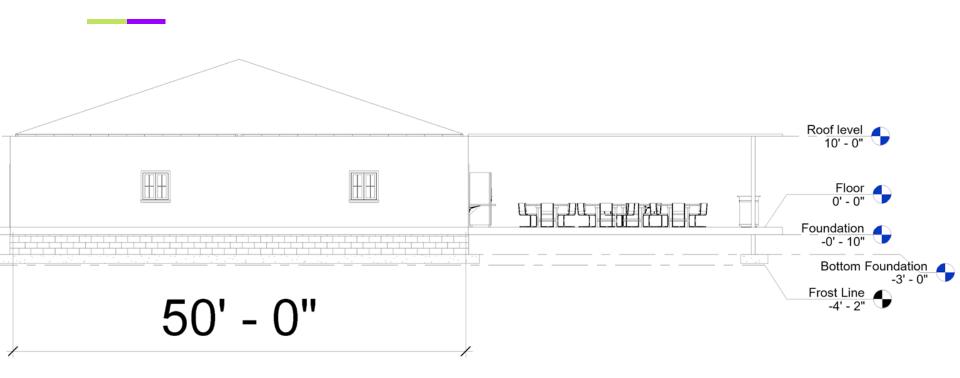


Building Orientation

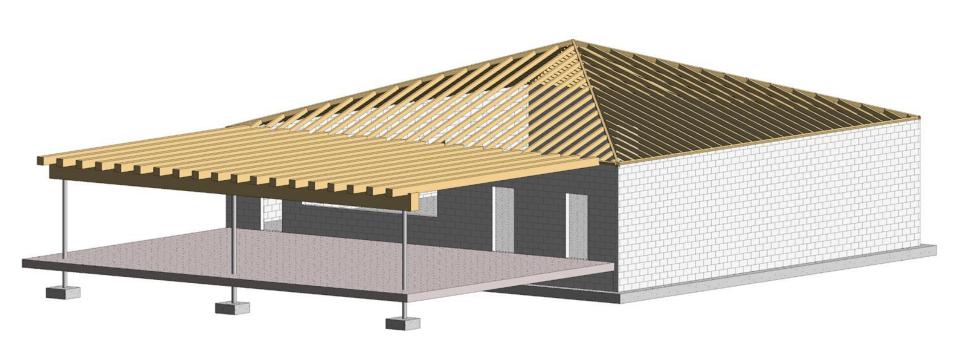
- Changed from initial E-W orientation to N-S orientation.
- View for the city Skyline.
- Better view of the playground and soccer field.
- Away from direct wind.



Plan View



North Elevation



East Elevation

Structural Model

Architectural Model

Seating Area

Exterior Enclosure

- Easy system attachment and roll up
- Wind rated up to 35 mph
- UV inhibitors when sunny
- Safe to use with standing space heaters

Kitchen

- Refrigerator/Freezer
- Flat Top Grill
- Deep Fryers
- Sinks
- Countertop Space
- Food Machines

Rendering

Storage Rooms

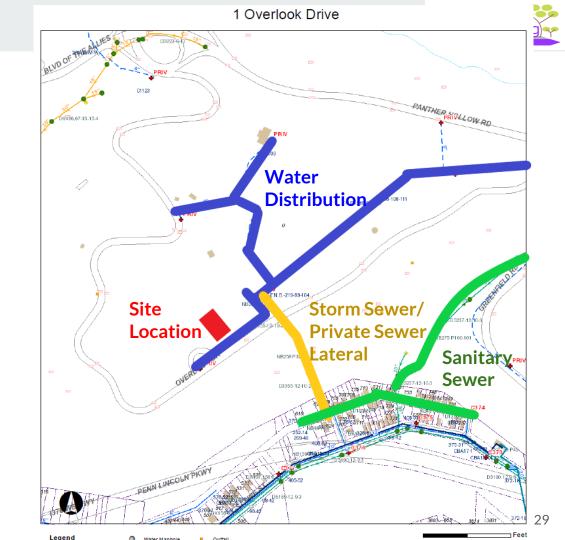
- Kitchen Storage
 - Shelving
 - Refrigerators/Freezers

- Equipment Storage
 - Areas divided by chain link fence
 - o 7 areas, 8 ft x 10 ft

Representative Cage

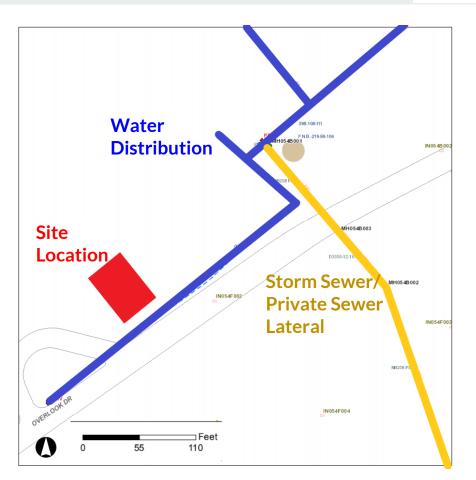
Restrooms

- 2 ADA compliant restrooms
 - Male and Female
- Single stall
- Sink/Mirror
- Hand dryer
- Baby changing station
- More restrooms located nearby

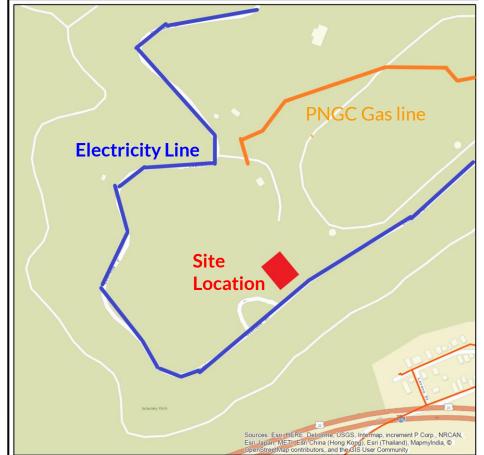


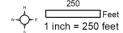
Rendered Bathroom Model

Site Sewage Line


- Red Site Location
- Yellow line storm sewer
- Green Line Sanitary sewer
- Private sewer Lateral not shown on map
- Blue Line Water
 Distribution Main

Site Sewage Line


- Red Site Location
- Yellow line storm sewer
- Green Line Sanitary sewer
- Private sewer Lateral not shown on map
- Blue Line Water
 Distribution Main



Gas/Electricity Line

- PNGC Gas Line
- Duquesne Light Electricity Line

Utility tie-in

All within close range of the building

Water distribution line <50 ft

• Electricity line <50 ft

Sewer line ~150 ft

Gas line ~250 ft

 Excavation is required but no significant Geotechnical Challenges

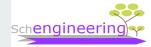
Soil/Foundation Analysis

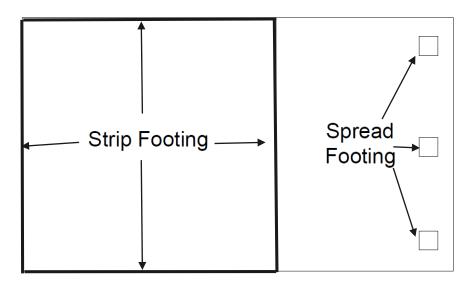
Soil Analysis

- U.S. Department of Agriculture (USDA) Soil Map
 - Gilpin silt loam => Poor subgrade
- Result of laboratory test
 - Direct shear test
 - Supporting soil cohesion: 10 kPa
 - Angle of internal friction: 25°
 - Unit weight test
 - $\rho = 125.5 \text{ lb/ft}^3$

· · · · · · · · · · · · · · · · · · ·					
_	Allegheny County, Pennsylvania (PA003) Allegheny County, Pennsylvania (PA003)				
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI		
GIB	Gilpin silt loam, 3 to 8 percent slopes	0.6	100.0%		

Shallow Foundation

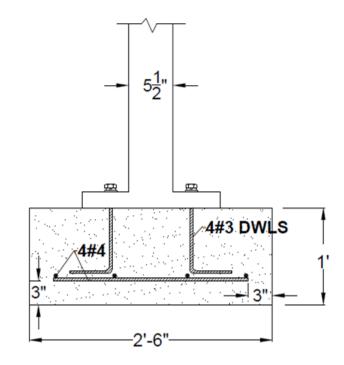

- Advantage:
 - Cost (affordable)
 - Construction Procedure (simple)
 - Material (mostly concrete)
 - Labour (does not need expertise)



Summary of Foundation Work

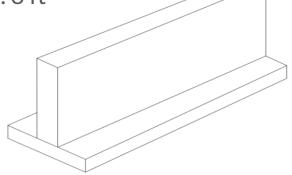
- Foundation consists of
 - Spread footings
 - Strip footings
- Size of footing based on settlement calculation from loadings

Spread Footing Final Design

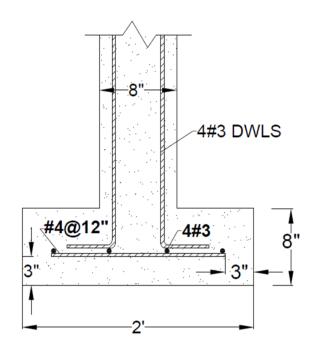

- Designed using ACI 318-14
- Shear ultimate < factored shear capacity
- One way shear
 - Shear ultimate: 2.38 kip
 - Factored shear capacity: 21.35 kip
 - Assumed effective depth checks: 7.5"
- Two way shear
 - Shear ultimate: 7.73 kip
 - Factored shear capacity: 47.5 kip

Load combination	1.9	ksf
fy	60,000	psi
f'c	4,000	psi
Clear cover	3	inches
Assumed depth	3	Feet
φ	0.75	-

Spread Footing Calculations


- Flexure
 - Mu: 2.58 kip-ft
 - Solve for area of horizontal rebar by using ultimate flexural
 - o Area of rebar: 0.65in²
 - Requires # rebar: 4#4 bars
- Assumed Tension was controlling factor
 - \circ ϵ_{t} =0.037 > 0.005
- Transfer of column forces to the base
 - Dowel reinforcement: 4#3 bars

Strip Footing Final Design


- Strip footing were design using the same process as spread footings.
 - Designed using ACI 318-14
- Generally controlled by minimum rebar requirements.
- Distance from the ground level to the footing base: 3 ft
- Ultimate bearing capacity: 9,600 lb/ft²
- Allowable soil pressure: 3,200 lb/ft²

Strip Footing Calculation

- Preliminary Member sizing
 - Assuming the footing thickness is equal to the thickness of wall
- Shear Capacity Check
 - \circ $V_u < \phi V_c o.k.$
- Flexural Reinforcement design
 - Provide #4 bars at 12in
- Shrinkage and Temperature Reinforcement
 - Provide 4#3 bars
- Dowel reinforcement
 - Provide 4#3 bars

Structural Analysis

ASCE Design Hazard Tool

Ultimate Wind Speed: 115 mph

Risk Category: II

Elevation: 1046.3' (NAVD 88)

Seismic Design Category: B

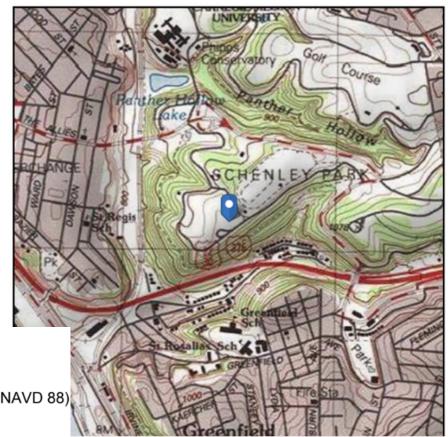
o Sds: 0.117

Ice Thickness: 0.75"

Pg: 25 psf (~20" settled snow)

Precipitation Intensity: 2.55 in./h

ASCE 7 Hazards Report

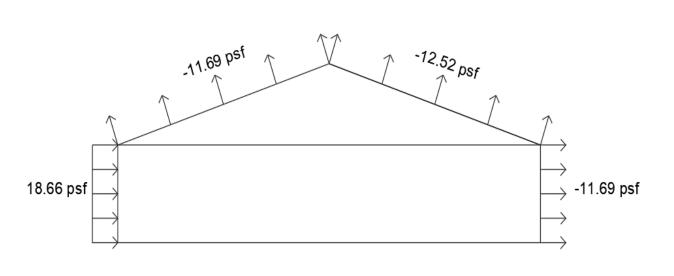

Standard: ASCE/SEI 7-10

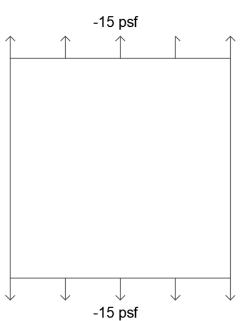
Risk Category: ^Ⅱ

Soil Class: D - Stiff Soil

Elevation: 1046.25 ft (NAVD 88)

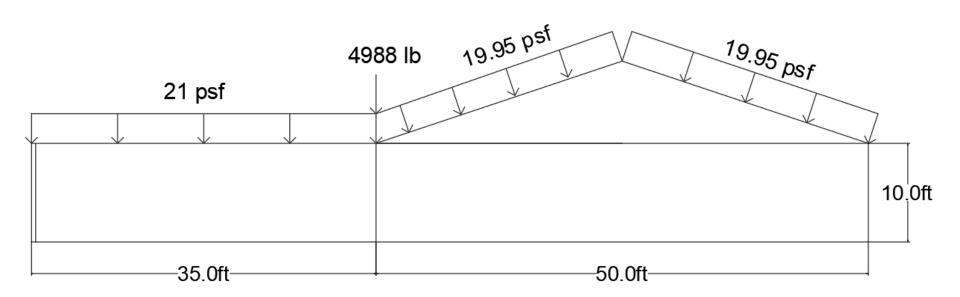
Latitude: 40.430921 Longitude: -79.944914


Dead Loads and Roof Live Loads for Design


- Roofing
 - Metal Deck : 2.5 (psf)
 - Insulation: 1.5 (psf)
 - Waterproofing: 0.7 (psf)
 - Wood rafters: 8 (psf)
- Live Load (Roof Maintenance)
- Minimum Reduced Load = 12 (psf)

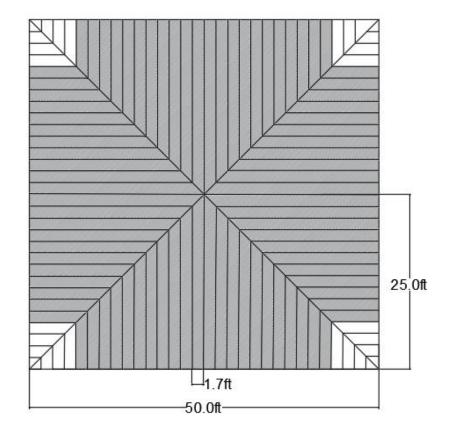
- Ceiling
 - Acoustic Fiber Board: 1 (psf)
 - Gypsum Board: 2.75 (psf)
 - Mechanical Duct Allowance:4 (psf)

Wind Loads

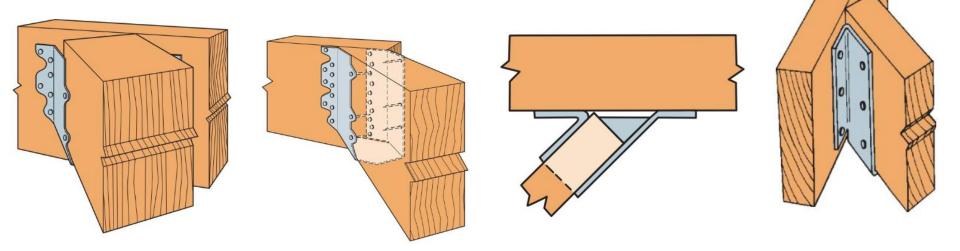


Elevation View

Plan View


Snow Loads

Main Roof Layout


- Girders: 12" x 24" Douglas
 Fir-Larch
- Beams: 4" x 16" Redwood
- Shaded Area: ¾ in. plywood sheathing
- Connections:
 - -Simpson Strong Ties
 - -Angled Steel Plates
 - -Rotafix Structural Adhesive

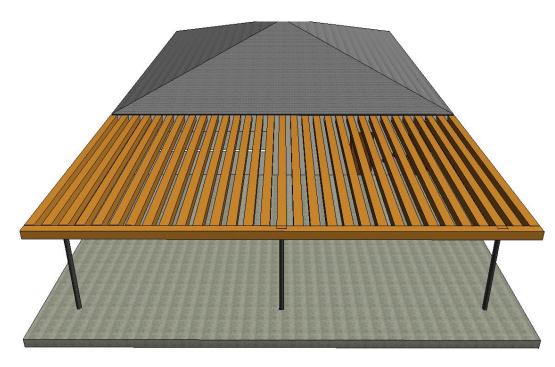
Truss Framing Connections

- 45-degree Skewed Face-Mount Hangers
- Fasteners: Structural Connector Screws

Structural Checks - Main Roof Frame

Girders:

- Flexure (capacity = 3773 psi)
 - 2394 psi < 3773 psi
- Shear (capacity = 338 psi)
 - 318 psi < 338 psi
- Compression (capacity = 1300 psi)
 - 680 psi < 1300 psi


Beams:

- Flexure (capacity = 3997 psi)
 - 3636 psi < 3997 psi
- Shear (capacity = 318 psi)
 - 46 psi < 318 psi
- Compression (capacity = 1850 psi)
 - 205 psi < 1850 psi

Outside Roof Layout

- All Members are Douglas Fir-Larch
- Girder: 16" x 22"
- Outer Beams: 10" x 10"
- Inner Beams: 12" x 12"

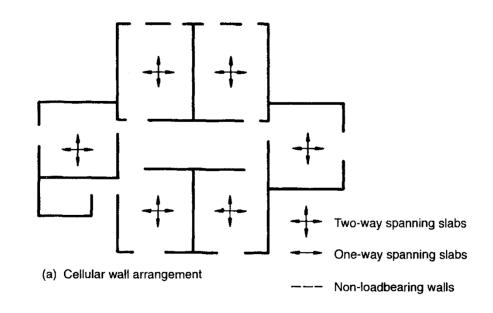
Structural Checks - Outside Roof Frame

Girder:

- Flexure (capacity = 3510 psi)
 - 3419 psi < 3510 psi
- Shear (capacity = 338 psi)
 - 123 psi < 338 psi

Outer Beams:

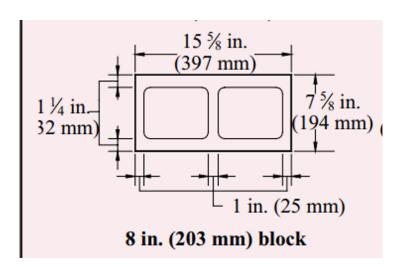
- Flexure (capacity = 3773 psi)
 - xx axis: 3596 psi < 3773 psi
 - yy axis: 800 psi < 3773 psi
- Shear (capacity = 338 psi)
 - 41 psi < 338 psi


Inner Beams:

- Flexure (capacity = 3773 psi)
 - 3714 psi < 3773 psi
- Shear (capacity = 338 psi)
 - 51 psi < 338 psi

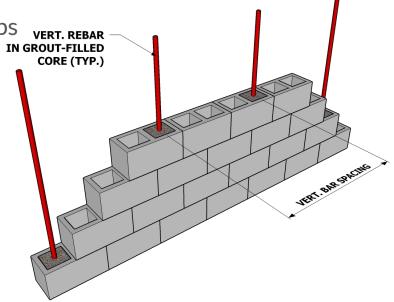
Wall Arrangements in Masonry Buildings

- Based on building model, a cellular wall arrangement will be the most appropriate option for our project.
- Other design considerations:
 - Robustness of the building
 - Serviceability
 - Frost resistance of the blocks
 - Dimensional changes
 - Fire Resistance
 - Mortar
 - Reinforcement

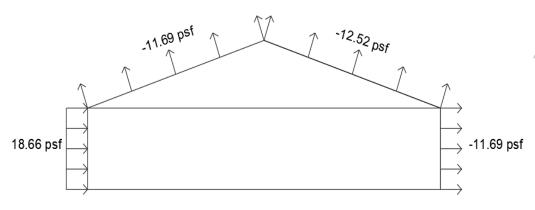


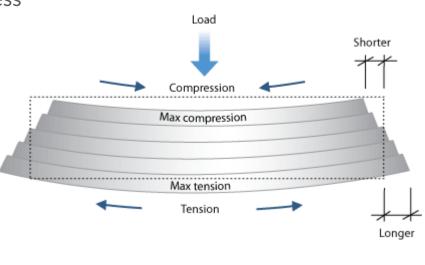
Structural Design- Concrete Masonry Walls

- Used Unit Strength Method
 - 8 inch medium weight hollow CMU
 - Type S Mortar
- Check Compressive Strength
- Determine Quantity and Size of Rebar



CMU Wall Compression Check


- Axial Force/ Wall = 56 Kips
 - Includes Weight of Sliding Snow ~ 5 Kips
- Compressive Strength = 65 kips
 - Includes Safety Factors
- 65 > 56 Kips, Compression Check Passes



Rebar Size and Quantity - Tensile Check

- Wind Pressure on CMU Wall Creates Tensile Stress
- Rebar Needed to Resist Tensile Force
- Max Moment from Wind = 2790 lb-in
 - Area of Steel Needed = 1.67 in²/ft

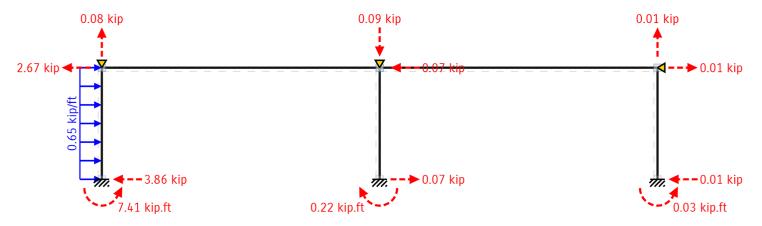
Rebar Selection

- Chosen Rebar Parameters:
- Rebar Spacing = 16 in.
 - Area Needed= 2.23 in.²
- Choose #14 Rebar
 - Area= 2.25 in.²

Imperial Bar Size	"Soft" Metric Size	Weight per unit length (lb/ft)	Mass per unit length (kg/m)	Nominal Diameter (in)	Nominal Diameter (mm)	Nominal Area(in ²)	Nominal Area (mm ²)
#10	#32	4.303	6.418	1.27	32.26	1.27	819
#11	#36	5.313	7.924	1.41	35.81	1.56	1006
#14	#43	7.65	11.41	1.693	43	2.25	1452
#18	#57	13.6	20.284	2.257	57.33	4	2581

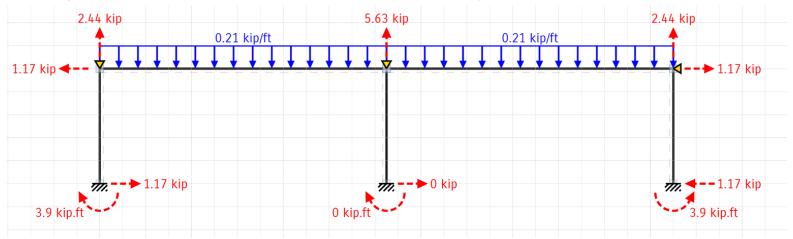
Steel Column Design-Porch

- Porch columns need to be designed to resist flexure.
- Sources of Flexure:
 - Wind when partition is closed- lateral force
 - Moment from Axial Loads
- Columns designed as Beam- Columns
 - Must resist Axial Loads, Moment, and Second-Order Effects.


Beam-Column Design - Axial Loads

- Factored Load = 57.565 psf
 - From ASCE 7-10 Load Combinations
- Tributary Area of Middle Column = 437.5 ft²
 - Columns were designed to be the same to maximize constructability
- Weight of Girder = 4.05 Kips
- Controlling Axial Load (Pnt) = 27.2 Kips

Beam-Column Design - Flexure


- Max moment from lateral forces must be calculated
 - Distributed Lateral Wind Load (Plt) = 0.65 Kips/Ft
 - Max Moment from Lateral Forces (Mlt) = 7.41 Kip*Ft

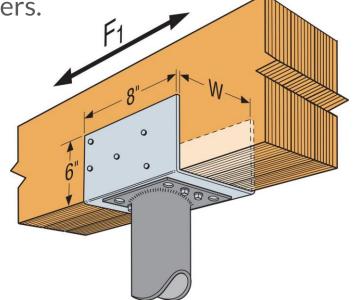
Beam-Column Design - Flexure

- Factored moment from Axial Loading must be calculated
 - Using ASCE 7-10 Load Combinations
 - Factored Moment (Mnt) = 19.5 Kip-Ft
- Example below showed for moment caused by Roof Live Load

	Seating area Moments (Kipft):								
	Dead Load:	Live Load (L):	Roof Live Load (Lr):	Rain Load (R):	Snow Load (S):	Wind Load (W):	Earthquake load (E):		
	4.15	0	3.9		6.78	7.41	1.52		
Combo 1 Factors	1.4							5.81	
Combo 2 Factors	1.2	1.6	0.5	0.5	0.5			8.37	
Combo 3 Factors	1.2	0.5	1.6	1.6	1.6	0.5		19.533	
Combo 4 Factors	1.2	0.5	0.5	0.5	0.5	1		15.78	
Combo 5 Factors	1.2	0.5			0.2		1	7.856	
Combo 6 Factors	0.9					1		11.145	
Combo 7 Factors	0.9						1	5.255	

Beam-Column Design - Member Selection

- Columns are fixed at base and pinned at girder:
 - \circ K = 0.8; KL = 8'
- To account for second- order effects, Mr and Pr are calculated using amplification factors.
 - Mr = 27.0 Kip -Ft
 - Pr = 33.8 Kips
- Select HSS 5.5X0.375 (weight = 20.55 lb/ft)
 - Mn = 32 Kip-Ft
 - Pn = 194 Kips



Connection

 HSS member was used to fit a special connection designed to connect steel columns to wooden girders.

Simpson Strong Tie Steel Column Cap

- Girder Dimensions:
 - W= 16"

Connection

- Axial Loads:
 - Corner Column:13.6 Kips
 - Middle Column:27.2 kips

Model No.	W (in.)	Girder	Nails ⁷	Lally Column Outside Diameter (in.)	Allowable Loads			
					Download 1,2,3,4		Uplift	F ₁ ⁵
					DF/SP/SPF	LVL/PSL/LSL	(160)	(160)
LCC5.25-3.5	5%	5.25 LVL/PSL/LSL	(8) 16d	31/2	_	15,820	_	1,615
LCC5.25-4	5%	5.25 LVL/PSL/LSL	(8) 16d	4	_	20,670	_	1,615
CC0S5.50	5½	5.25 LVL/PSL/LSL	(10) 10d	_	_	22,100	1,020	2,200

Connection Details

- Steel column will be attached to connection with 4 Quik Drive selftapping screws
- Middle column will be a spliced condition, but exceeds axial loading for spliced condition
 - Additional bracing will be installed to transfer axial loads to the column

Cost Estimate

Estimating Method

- Unit price estimating
- Quantity takeoffs
- Unit price includes **material** and **labor** cost
- Quantity x Unit Price = Cost
- Unit prices obtained from "2018 Building Construction Costs"

Supervision Estimate

Key Items

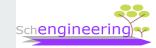
- Project Manager = \$33,800
- Project Engineer = \$16,900
- Superintendent = \$19,500
- Operator = \$11,400
- Survey Crew = \$1,680

Supervision Total = \$84,900

Activity Estimate

Key Items

- Interior Roofing System = \$54,600
- Exterior Roofing System = \$23,500
- CIP Concrete = \$21,300
- CMU Block Construction = \$19,900
- Backfilling = \$10,900


Total Activity Cost = \$191,500

Permitting Estimate

- Building = \$2,075
- Electrical = \$497
- HVAC = \$165
- Fire Alarm/Sprinkler = \$95
- Signs = \$106
- Land Operations = \$880

^{*}Data taken from the City of Pittsburgh 2018 Fee Schedule

Equipment Estimate

Key Items

- Excavator = \$22,620
- Rough Terrain Crane = \$10,800
- Skid Steer = \$6,370
- Concrete Pump Truck = \$2,150
- Dump Truck = \$2,205
- Electric Generator = \$1,365

Miscellaneous Items

Field Office

Furnished Field Trailer= \$2,900

Temporary Support Facilities

- Electricity, Fuel Bill
- Drinking Water
- Temporary Toilet
- Total= \$14,100

Misc Total = \$68,900

General Support Items

- Safety Drug Test/PPE
- Dumpsters
- Total = \$7,500

Kitchen

• Equipment = \$21,900

Risk

• Contingency = \$22,500

Estimating Summary

- Project Estimate
 - Supervision = \$84,900
 - Activity = \$191,500
 - Permitting = \$3,800
 - Equipment = \$48,500
 - Miscellaneous = \$68,900

Total = \$397,600

Risk Analysis

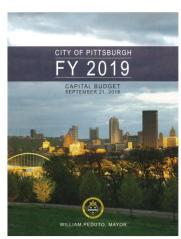
Risk Assessment

What can go wrong?	Probability (%)	Estimated Cost	Contingency	Can we prevent it?	Plan
Inclement weather	90%	\$4,000.00	\$3,600.00	No	Use float days
Equipment not available to buy	40%	\$4,500.00	\$1,800.00	Yes	Lease as an alternative
Delayed deliveries	30%	\$5,000.00	\$1,500.00	No	Reassign workers to other tasks.
Design errors	30%	\$6,000.00	\$1,800.00	Yes	Submit RFI to designer
Poor subsurface conditions	30%	\$4,000.00	\$1,200.00	No	Inspect soil and do necessary work to make it usable
Flooding	25%	\$4,000.00	\$1,000.00	No	Halt construction and use pumps to pump water out of site
Equipment breaks	25%	\$4,000.00	\$1,000.00	No	Rent equipment so supplier can send out backup equipment. accept the waiting period
Material shortage	25%	\$3,000.00	\$750.00	Yes	Find alternative material or find a new supplier
Theft of equipment	20%	\$5,000.00	\$1,000.00	Yes	Have work area fenced in and locked at the end of each day
Vandalism	20%	\$3,000.00	\$600.00	No	Put up fences around construction area and lock at the end of each day.
Water shortage/electricity blackout	20%	\$2,000.00	\$400.00	No	Shut down temporarly, if outage continues accept lost time
Material arrives broken/ not to					
standards	20%	\$4,000.00	\$800.00	No	Return material. Find new supplier if problem not quickly fixed
Cost escalation	20%	\$8,000.00	\$1,600.00	No	Have a conservative const estimate so if it does escalate, it wont be a problem

Risk Assessment

What can go wrong?	Probability (%)	Estimated Cost	Contingency	Can we prevent it?	Plan
Project manager ill/absent	20%	\$5,000.00	\$1,000.00	No	Next higest ranking personel in charge
Damage existing utilites	10%	\$10,000.00	\$1,000.00	Yes	Call utility company. ASAP
Failed final inspection	10%	\$5,000.00	\$500.00	Yes	Do bi-weekly inspections so that there would be no problems
Fire	10%	\$5,000.00	\$500.00	Yes	Call 911. Brief workers on Emergency response Plan
Incomplete set of drawings provided	10%	\$5,000.00	\$500.00	Yes	Make sure proper drawings are obtanied prior to work being performed.
Owner is late with payments	10%	\$7,500.00	\$750.00	No	Continue construction unless issue continues to persist
Strikes	10%	\$5,000.00	\$500.00	No	Delay costs until theres a settlement
Fire	10%	\$5,000.00	\$500.00	Yes	Call 911. Brief workers on Emergency response Plan
Incomplete set of drawings provided	10%	\$5,000.00	\$500.00	Yes	Make sure proper drawings are obtanied prior to work being performed.
Owner is late with payments	10%	\$7,500.00	\$750.00	No	Continue construction unless issue continues to persist
Strikes	10%	\$5,000.00	\$500.00	No	Delay costs until theres a settlement
Job-site injury	5%	\$15,000.00	\$750.00	No	Call 911 if serious. Report injury to OSHA. Hold weekly saftey meetings.
Job-site injury	5%	\$15,000.00	\$750.00	No	Call 911 if serious. Report injury to OSHA. Hold weekly saftey meetings.

Risk Assessment Final Cost


- Our total estimated risk cost = \$22,500
- This is roughly 6% of our final cost.

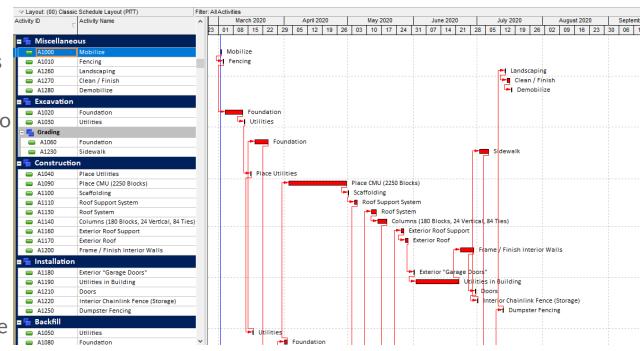
Funding

- Pittsburgh has a seven year capital budget that ranges from (2018-2024).
- After contacting the city, they informed us that we wouldn't be able to start this project until the spring of 2025
- One of the cities main goals in the current budget is to restore parks such as:
 - Homewood Park
 - South Side Park
 - Arsenal Park
- Confident that our project will be accepted and incorporated into the new capital budget starting in 2025

Schedule & Staging

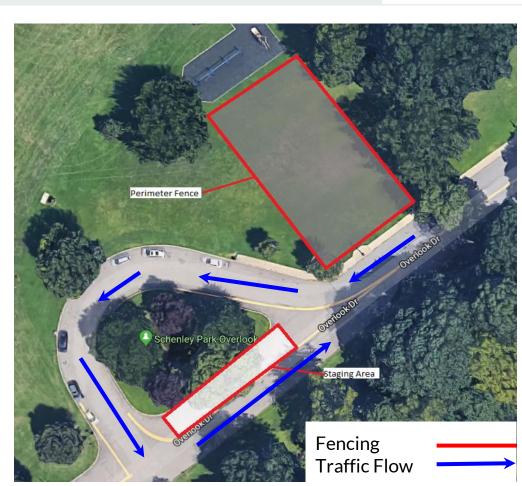
Schedule

- The Pre-construction Phase
 - Completed
 - Meeting with shareholders/financial leaders/public
 - Site Surveying
 - Future
 - Environmental Site Assessments
 - Construction plans and other document reviews


- The Construction Phase
 - Site Work
 - Foundation Construction
 - Building Construction
 - Utilities Installation
 - Punchlist/Final Cleaning
- The construction should be completed in 13 weeks

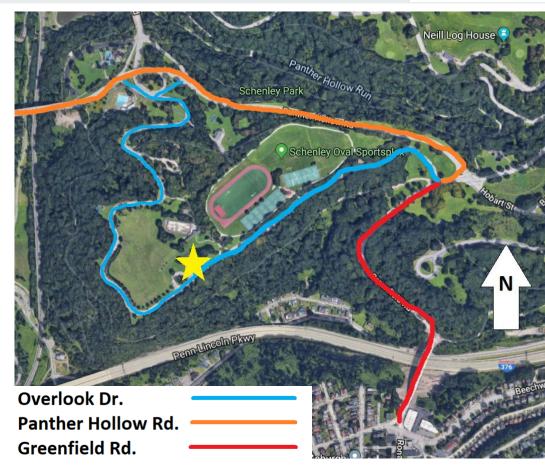
Schedule P6

- Schedule broken down into dozens of activities
- Activities separated into various WBS
- Activities connected together with FS & SS logic ties
- Each activity is resource
 Loaded



Site Logistics

Equipment Staging


- Material & equipment will be stored on site
- Excess material stored in staging area
- Fencing set up around staging area and on site for loss prevention
- Security cameras already in place on light poles

Traffic

- Construction will have low impact on traffic
- Traffic will remain open
 - Flagging used when necessary
- Access road is Overlook Drive, the Northern Entrance
 - (~38 ft width including parking)
- Larger vehicles will access using East entrance

Future Steps

Solar Power


- Panel Requirement
 - 2,000 kWh during active months
 - 400 W per panel
 - 35 Panels required
- Cost
 - \$2.50 per Watt
 - \$35,000
- Savings
 - \$170 per month
 - \$2,000 per year
 - Pennsylvania Net Metering

Spatial Requirement for Solar Panels

- Space for maintenance
- 35 Panels
 - o 750 SF
- Current roof design
 - 650 SF per side
- 2 Sided (Gable) roof design
 - 1200 SF per side
- Mono-pitched
 - o 2300 SF

Final Thoughts

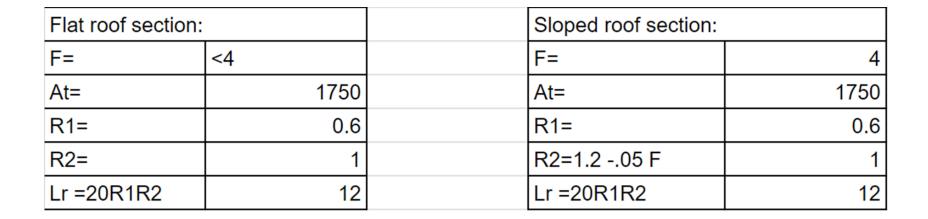
Additional Steps

- Funding
 - Alternative sources of funding
 - Community Support
 - Sports Organizations
- Leasing food services
 - Reduce costs to the city

Summary

Resources and Thank You

- Dr. Rizzo
- Professor Sebastian
- Dr. Bunger
- Dr. Oyler
- Dr. Stephens
- Dr. Sachs
- Engineering Library
- Cindy (Soccer Organizer)
- Sue (Citiparks)
- Julie Asciolla (PWSA)
- David Hommrich (President of Sunrise Energy)



Thank You

Roof Live Load Table

Snow Load:

Flat Roof	
Ce =	1
Ct =	1.2
Pg(psf) =	25
Is	1
Pf(psf) = 0.7*Ce*Ct*Pg*ls:	21

Sloped Roof:	
Cs =	0.95
Pf (psf) =	21
Ps(psf)= Cs*Pf:	19.95

Side Wall, Closed Case:				
Ext. Pres. Coefficient, Cp:	-0.7	Fig. 27.4-1		
Wind Pressure, P=qh*G*Cp-qh(GCpi)	-14.98065581	Eq. 27.4-1		
Windward Roof, Closed Pitched Case (Negative):				
Ext. Pres. Coefficient, Cp:	-0.5	Fig. 27.4-1		
Wind Pressure, P=qh*G*Cp-qh(GCpi)	-11.69457647	Eq. 27.4-1		

Windward Wall, Closed Case:				
Ext. Pres. Coefficient, Cp:	0.8	Fig. 27.4-1		
Wind Pressure, P=qz*G*Cp-qh(GCpi)	18.65841953	Eq. 27.4-1		

Roof, Open Flat Case (case A): D <h< th=""></h<>				
Ext. Pres. Coefficient, Cn: -0.8 Fig. 27.4-5				
Wind Pressure, P=qh*G*Cn	-13.14431736	Eq. 27.4-3		

Leeward Roof, Closed Pitched Case:				
Ext. Pres. Coefficient, Cp: -0.55 Fig. 27.4-1				
Wind Pressure, P=qh*G*Cp-qh(GCpi)	-12.51609631	Eq. 27.4-1		

Solar

- 2000 kWh/month or
 - o 16,000 kWh over 8 months
 - 17,000 kWh per year
- 1240 kWh/kW/year
 - 14 kW / year
- 400 W / panel
 - 35 Panels Required

- 35 Panels
 - o 1,100 SF
- Current roof design (4 sides)
 - 500 SF per side
- 2 Sided roof design
 - o 1,200 SF
 - Limited by panel dimensions
- 1 Slope roof design
 - o 2,300 SF
 - No Configuration Restrictions

What Would Need to Happen

- Roof Redesign (Single Slope)
 - Use Standing Seam Roof
 - S-5 Seam Clamp at \$5 per clamp
 - \$300 Total

