# MILLIE'S HOMEMADE ICE CREAM FACILITIES

Cream of the Crop Construction

# **Team Members**



#### Construction Management

- Nicole Bell
- Nathan Crikelair
- Mike Klena

#### <u>Geotechnical</u>

• Jordan Walk

#### <u>Structures</u>

- Hannah Schell
- Zach Michak
- Matthew Hanna

#### <u>Environmental</u> ● Andrew Ricci

## Outline



#### • <u>Client: Millie's</u> 루

- Conceptual Design
- Identifying Facility Location
- Phase 1: Cold Storage Facilities
  - Foundation Design
  - Parking Lot Design
  - Structural Design
  - Environmental Design
  - Estimate/Schedule
  - Health and Safety Plan
- Phase 2: Manufacturing Facility
- Summary

#### Client: Millie's





Chad Townsend Ice Cream Maker & Scientist

Lauren Townsend Taste Tester & Happiness Curator







# Client: Millie's



- Family owned
- Homemade ice cream
- Locally sourced ingredients
- Vegan and gluten free











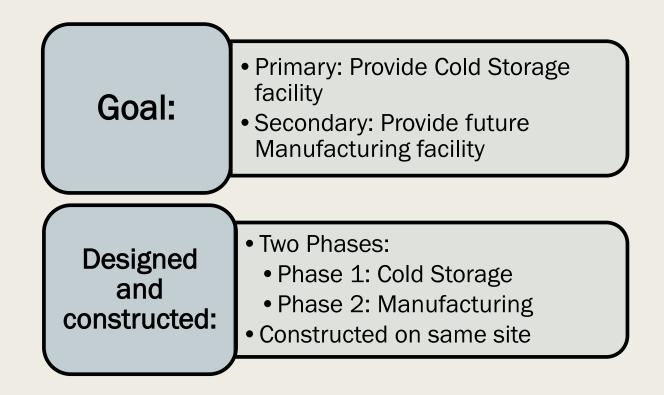
#### **Problem Statement**

#### Millie's is rapidly expanding and needs a higher storage capacity in order to keep up with their ice cream demand

## **Owner Preferences**



**Expand production** 


**Cold Storage facility** 

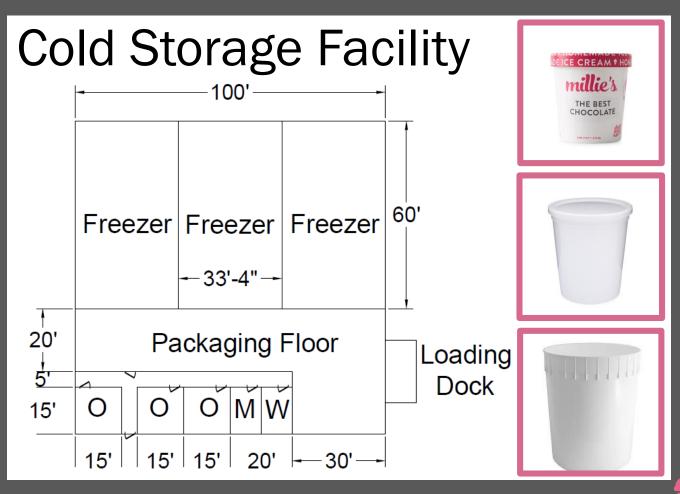
- Sizing: 10,000 ft<sup>2</sup>
- Budget: \$500,000-\$750,000

Manufacturing facility

• Sizing: 6,000 ft<sup>2</sup>

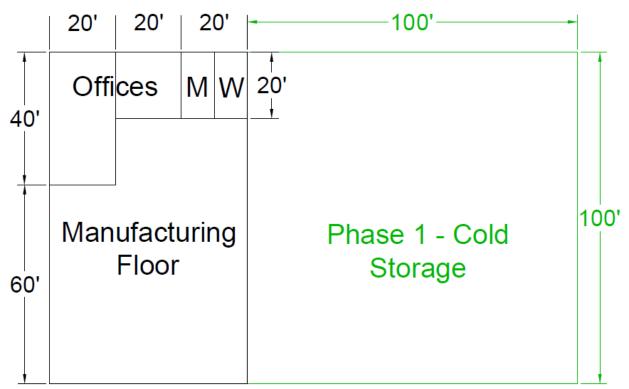
#### Location




## Scope



## Outline




- Client: Millie's
- <u>Conceptual Design</u>
- Identifying Facility Location
- Phase 1: Cold Storage Facilities
  - Foundation Design
  - Parking Lot Design
  - Structural Design
  - Environmental Design
  - Estimate/Schedule
  - Health and Safety Plan
  - Phase 2: Manufacturing Facility
- Summary



V

#### Manufacturing Facility



## Outline

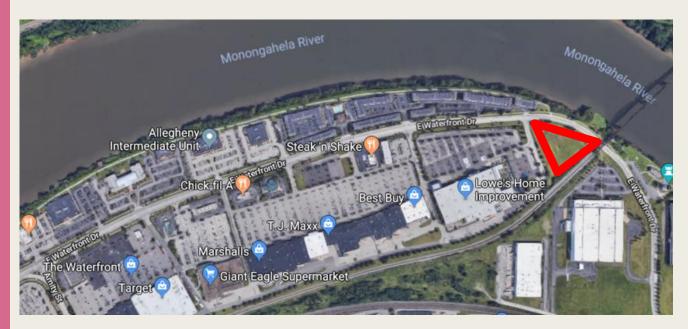


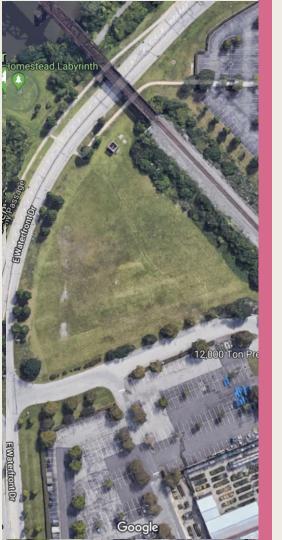
- Client: Millie's
- Conceptual Deign
- Identifying Facility Location
- Phase 1: Cold Storage Facilities
  - Foundation Design
  - Parking Lot Design
  - Structural Design
  - Environmental Design
  - Estimate/Schedule
  - Health and Safety Plan
- Phase 2: Manufacturing Facility
- Summary

# **Location Options**



#### Phase 1: Cold Storage facility

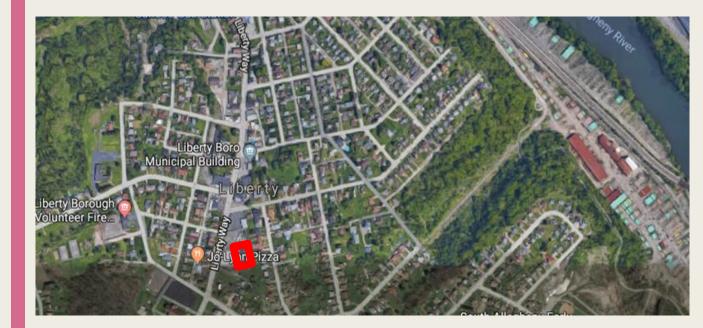

- Alternate options analyzed:
  - Purchase empty lot, construct new facility
  - Purchase existing industrial facility and retrofit
  - Purchase existing building, demo, new construction


#### Phase 2: Construct Manufacturing facility

 Addition to new Cold Storage facility from options above



#### **Option A: Waterfront** - Empty Lot, New Construction





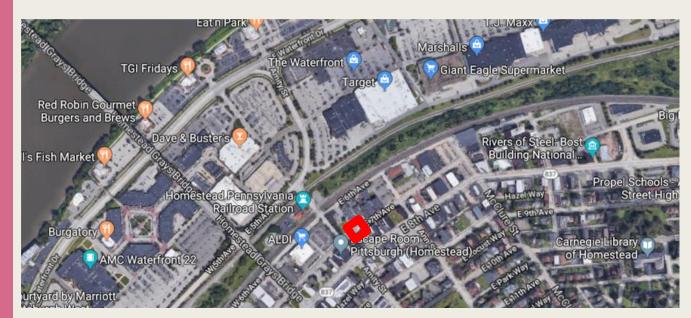

# Option A: Option A: New Construction

- Location
  - 301 E Waterfront Dr., Homestead, PA
- Details
  - Open land
  - 3 acre lot
- Price: \$1,500,000
- Divided lot details
  - Assume lot can be divisible
  - 1.5 acre lot
  - \$750,000










# **Option B: Retrofit**

- Details:
  - Existing retail facility and parking lot
  - 1.23 acre lot
  - 7200 ft<sup>2</sup> (may need addition)
- Price : \$542,850
- Change layout to meet storage space needs
- Needs expanded laterally and vertically
- Parking lot resurfacing



## Option C: Homestead - Demolition/Construction





# Option C: Demolition



- Location: 601 Amity St, Homestead PA
- Details:
  - 0.33 acre lot
  - 6,000 ft<sup>2</sup> building to demo
- Price: \$550,000



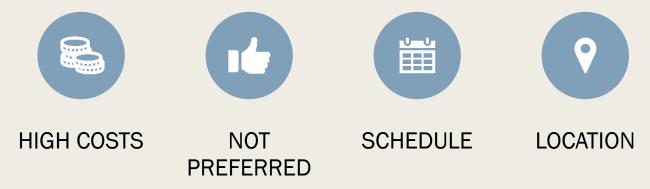



# **Decision Matrix Ranking**

| Parameters | A: New Cons | B: Retrofit | C: Demo |
|------------|-------------|-------------|---------|
| Location   | 2           | 3           | 1       |
| Cost       | 3           | 1           | 2       |
| Soil Info  | 1           | 3           | 2       |
| Access     | 1           | 2           | 3       |
| Expansion  | 1           | 2           | 3       |
| Risk       | 1           | 3           | 2       |
| TOTAL      | 9           | 14          | 13      |

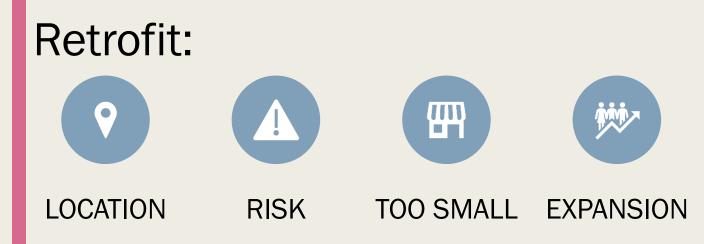


#### **Location Selection**




Option A: Empty Lot, New Construction




#### **Reasoning Behind Our Choice**

#### **Demolition:**





#### **Reasoning Behind Our Choice**



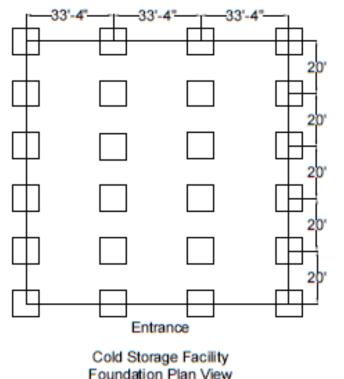
## Outline



- Client: Millie's
- Conceptual Design
- Identifying Facility Location
- Phase 1: Cold Storage Facilities
  - Foundation Design
  - Parking Lot Design
  - Structural Design
  - Environmental Design
  - Estimate/Schedule
  - Health and Safety Plan
- Phase 2: Manufacturing Facility
- Summary

#### Soil Parameters

- Borings from GAI Consultants
- Fill Unit Weight96 pcfFill Angle of<br/>Friction29°Groundwater<br/>Depth40 ftPlastic Limit16Liquid Limit25


9

**Plasticity Index** 

| epth (ft) | Soil | Description           |  |
|-----------|------|-----------------------|--|
| 1.5       |      |                       |  |
| 3         |      | Sand- FILL            |  |
| 4.5       |      |                       |  |
| 6         |      |                       |  |
| 7.5       |      | Slag- <b>FILL</b>     |  |
| 9         |      |                       |  |
| 10.5      |      |                       |  |
| 12        |      |                       |  |
| 13.5      |      | Sand- FILL            |  |
| 15        |      | Sand- FILL            |  |
| 16.5      |      | Clay <b>FIL</b>       |  |
| 18        |      | Clay- <b>FILL</b>     |  |
| 19.5      |      | Clay- <b>Alluvial</b> |  |
| 21        |      |                       |  |
| 22.5      |      |                       |  |
| 24        |      |                       |  |
| 25.5      |      | Sand- <b>Alluvial</b> |  |
| 27        |      |                       |  |
| 28.5      |      |                       |  |
| 30        |      |                       |  |



#### Foundation Design-Cold Storage



- 24 total footings
- 33 ft 4 in center to center spacing for each column
- 20 ft center to center spacing for each row

Loading Dock



#### Foundation Design-Axial Load

- Axial Load of 175 k.
- Use Terzaghi Square Footing Foundation equation  $\circ q=1.2cN_c+\gamma D_fN_q+.4\gamma N_{\gamma}B$

| Factor of Safety           | >3         |
|----------------------------|------------|
| Depth of Embedment         | 4 ft       |
| Required Width of Footing  | 7.5 ft     |
| Ultimate Bearing Capacity  | 10,000 psf |
| Allowable Bearing Capacity | 3,250 psf  |



## Foundation Design-Moment

| Strong Moment             |                          | Weak Moment                                        |   |
|---------------------------|--------------------------|----------------------------------------------------|---|
| Design<br>Moment          | 365 k-ft                 | Design<br>Moment 38 k-ft                           |   |
| Required<br>Area of Steel | 0.17 in <sup>2</sup> /ft | Required<br>Area of Steel 0.06 in <sup>2</sup> /ft | - |
| Spacing for<br>#3 Bars    | 8 in                     | Spacing for<br>#3 Bars 20 in                       |   |
| Required<br>Width         | 10 ft                    | Required 7.5 ft<br>Width                           |   |



#### Foundation Design-Settlement

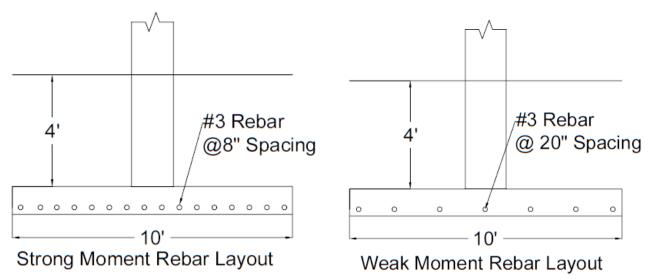
• Primary consolidation settlement:

$$S_c = \frac{C_c + H_c}{1 + e_0} \log \frac{\sigma_0 + \Delta \sigma_{avg}}{\sigma_0}$$

- Assume normally consolidated
- Newmark diagrams to help determine footing's influence on settlement below
- Resulted in a settlement of **0.86 in**



#### Foundation Design-Settlement


 Elastic settlement for clays

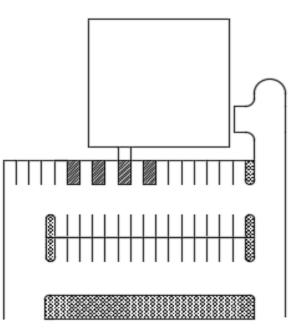
$$S_e = A_1 A_2 \frac{q_0 B}{E_s}$$

- Janbu (1956)
- Resulted in settlement of 0.25 in

- Settlement of our building is 0.86 in+0.25 in=**1.11 in**
- Total settlement must be less than 1.75 in. Based on Skempton and McDonald (1956)
- Add expansion joints to slab to prevent cracking and help reduce effect on slab

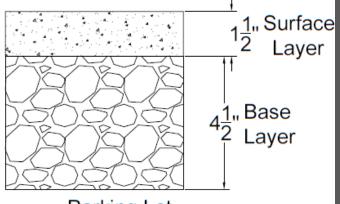
# Foundation Design-Cross Section




## Outline



- Client: Millie's
- Conceptual Design
- Identifying Facility Location
- Phase 1: Cold Storage Facilities
  - Foundation Design
  - Parking Lot Design
  - Structural Design
  - Environmental Design
  - Estimate/Schedule
  - Health and Safety Plan
- Phase 2: Manufacturing Facility
- Summary


# Parking Lot

- 45 Regular parking spaces
  - All 9x18 ft
  - Anticipating 10 CSF employees and 30 future MF employees
- 3 Handicap parking spaces
  - Meets ADA requirements
  - Open spaces on both ends for accessibility
- Space for loading dock
- Turnaround area
- Green space



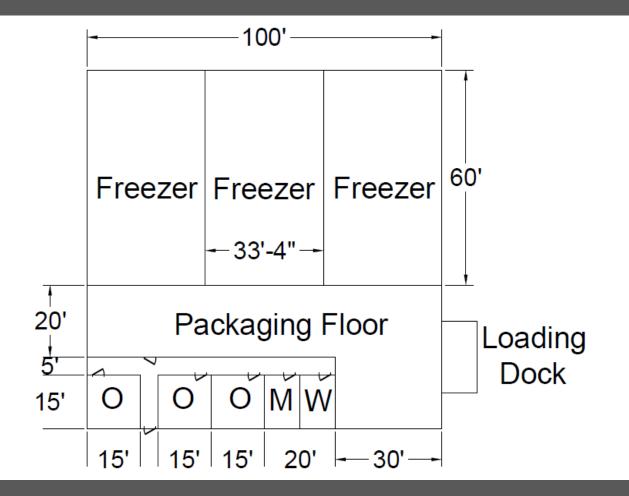
# Parking Lot

- Surface area of pavement is 21,000 ft<sup>2</sup>
- Pavement distances based on Pennsylvania Asphalt Pavement Association



Parking Lot Pavement Cross Section




## Parking Lot



# Outline

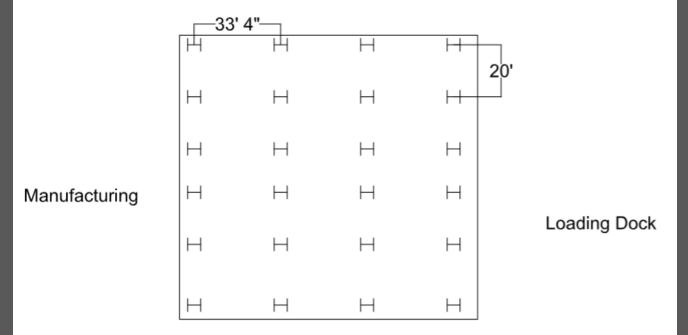


- Client: Millie's
- Conceptual Design
- Identifying Facility Location
- Phase 1: Cold Storage Facilities
  - Foundation Design
  - Parking Lot Design
  - <u>Structural Design</u>
  - Environmental Design
  - Estimate/Schedule
  - Health and Safety Plan
- Phase 2: Manufacturing Facility
- Summary

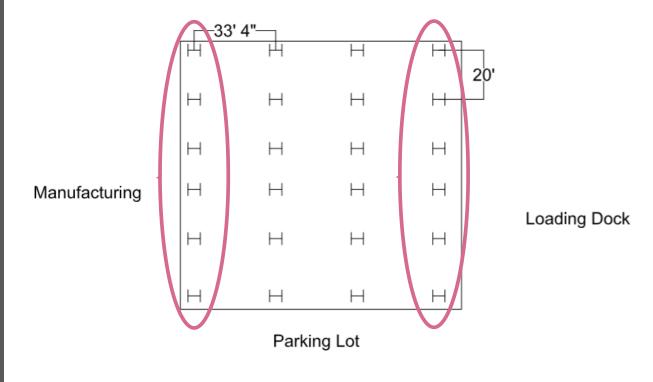


## Loadings




#### ASCE 7-10 used to determine loadings:

- Dead load 125 psf
- Snow load 17.5 psf
- Wind load 27 psf
- Seismic load 1.2 psf


LRFD load cases:

- 1.4D = 175 psf
- $1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R) = 159 \text{ psf}$
- $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W) = 192 \text{ psf}$
- $1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R) = 186 \text{ psf}$
- $1.2D + 1.0E + L + 0.2S = 155 \, psf$
- 0.9D + 1.0W = 140 psf
- 0.9D + 1.0E = 114 psf

# Column Layout



#### **Exterior Column Design**

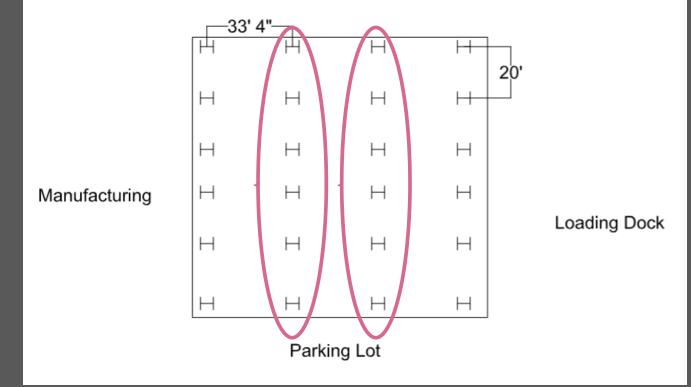


# Exterior Column Design



**Design parameters** 

- Axial Load: 70 k
- Bending Moment (X): 380 k-ft
- Bending Moment (Y): 13 k-ft
- Unbraced Length: 15 ft


#### W14x74 member selected per AISC

- Axial Compressive Strength: 809 k
- Bending Strength (X): 422 k-ft
- Bending Strength (Y): 187 k-ft

#### Flexural and bending capacity check

• =.92<1----0K

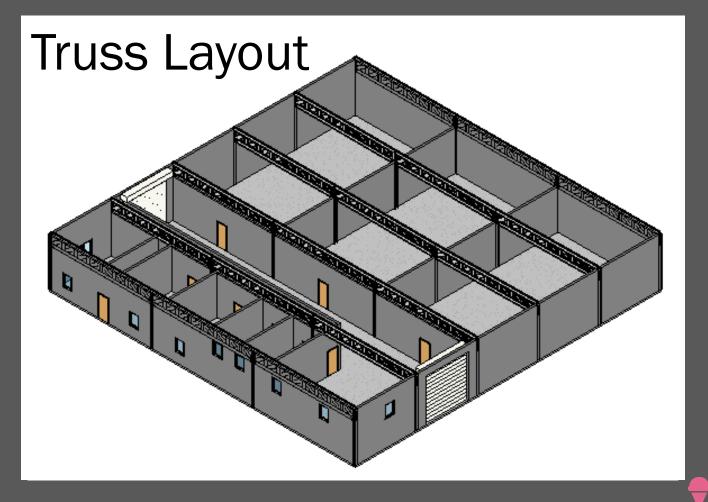
#### Interior Column Design



# Interior Column Design



#### **Design parameters**

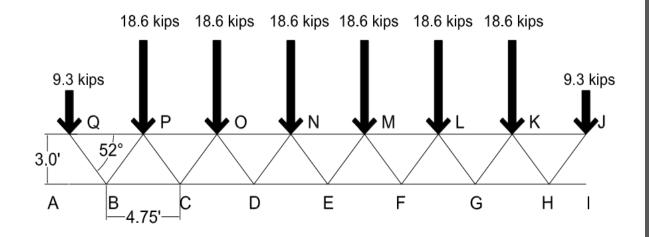

- Axial Load: 140 k
- Bending Moment (X): 0 k-ft
- Bending Moment (Y): 26 k-ft
- Unbraced Length: 15 ft

#### W10x33 member selected per AISC

- Axial Compressive Strength: 295 k
- Bending Strength (X): 119 k-ft
- Bending Strength (Y): 38 k-ft

Flexural and bending capacity check

•=.76<1----OK

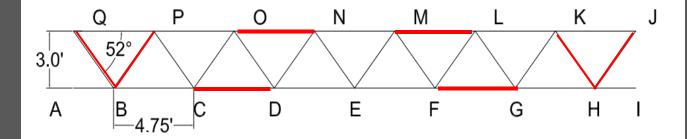





# **Truss Design Concept**

- Initial considerations:
  - Open web steel joists: Prefabricated truss system
  - 100 ft span trusses personally designed
- Secondary considerations
  - Interior columns
- Final selection
  - Smaller flat Warren truss
  - 33 ft 4 in long
  - 18 total trusses

## **Truss Design**

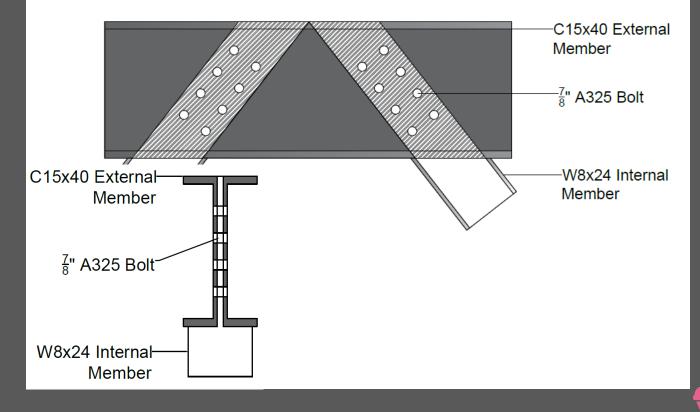



# **Truss Internal Loadings**

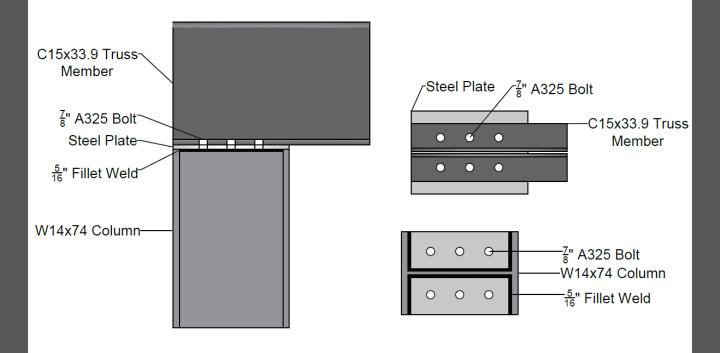


| Member | Load (k) | T or C |
|--------|----------|--------|
| AB     | 4.1      | Т      |
| BQ     | 226      | С      |
| QP     | 144      | Т      |
| BP     | 226      | Т      |
| BC     | 276      | С      |
| PC     | 202      | С      |
| PO     | 409      | Т      |
| CO     | 202      | Т      |
| CD     | 527      | С      |
| DO     | 178      | С      |
| ON     | 645      | Т      |
| DN     | 178      | Т      |

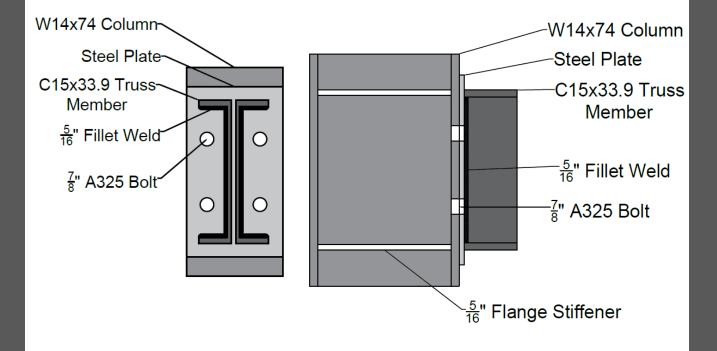
#### **Maximum Loaded Members**

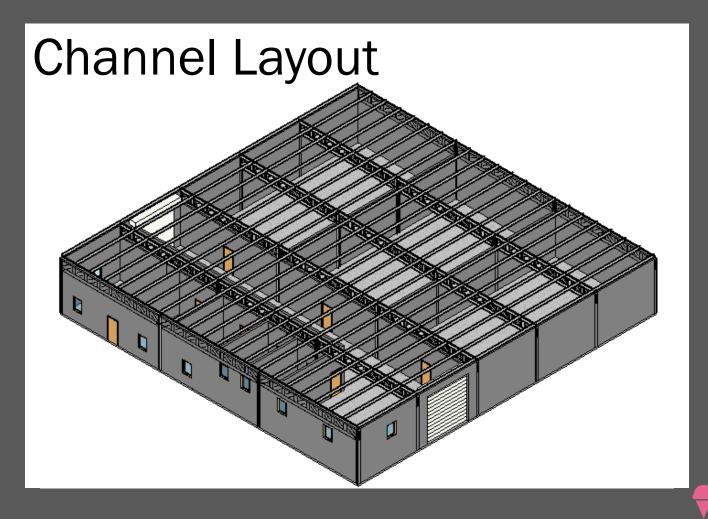




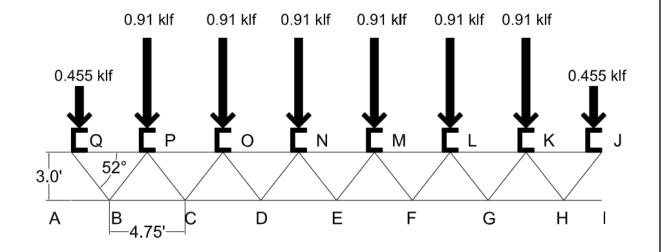


# **Truss Member Selection**

| Truss Member              | Maximum Force | Member<br>Selection |
|---------------------------|---------------|---------------------|
| Horizontal<br>Tension     | 645 k         | 2C15x40             |
| Horizontal<br>Compression | 527 k         | 2C15x33.9           |
| Diagonal<br>Tension       | 226 k         | W8x24               |
| Diagonal<br>Compression   | 226 k         | W8x24               |


#### **Internal Truss Connection**




### **External Truss Connection**




## **External Truss Connection**





# **Channel Design**



# Channel Design



Design parameters

- Span Length: 20 ft
- Channel Spacing: 4.75 ft
- Unbraced Length: 0 ft
- Design Moment: 48 k-ft
- Design Shear: 9.9 k

C12x20.7 member selected per AISC

# Outline



- Client: Millie's
- Conceptual Design
- Identifying Facility Location
- Phase 1: Cold Storage Facilities
  - Foundation Design
  - Parking Lot Design
  - Structural Design
  - <u>Environmental Design</u>
  - Estimate/Schedule
  - Health and Safety Plan
- Phase 2: Manufacturing Facility
- Summary

# Water Tank Considerations

- Sizing off monthly demand
  - Yields a smaller tank but more variation
  - Less total weight for building
- Sizing off yearly demand
  - Large tank
  - Less risk involved as tank can store more
  - Increases total weight of building significantly





# Water Tank Parameters



Water use per capita is 40 gallons a day

- Industrial use
  - Designed for 5 people

Average water use is 200 gallons per day

• A safety factor of 1.25 is used

10,000 gallon storage tank is chosen

• With a usage of 7,750 gallons a month

Minimum monthly rainfall is 2.3 in

• Found on www.weather.gov

Evapotranspiration rate of 1,600 gallons a month

0.26 in/day for sedum

# Distribution of Water within the Facility



Storm water will be stored on site for gray water purposes

- The green roof will act as a natural filtration system
- From the filtration, no excess treatment will be required
- Stored water can also be used for additional irrigation

#### **Drinking water**

- The domestic use of water will be supplied by PWSA
- Black water will be discharged to PWSA

# **Green Roof Benefits**



- Controls storm water runoff
- Improves water runoff quality
- Mitigates urban heat-island effects
- Reduce HVAC costs



## Green Roof Design





# Outline



- Client: Millie's
- Conceptual Design
- Identifying Facility Location
- Phase 1: Cold Storage Facilities
  - Foundation Design
  - Parking Lot Design
  - Structural Design
  - Environmental Design
  - <u>Estimate/Schedule</u>
  - Health and Safety Plan
- Phase 2: Manufacturing Facility
- Summary

## Phase 1: Cost Estimate



• Used the RSMeans Building Construction Cost Data

| ITEM                | COST        |
|---------------------|-------------|
| COST/SF             | \$128/SF    |
| STORAGE FREEZERS    | \$270,000   |
| GREEN ROOF (w/TANK) | \$100,000   |
| TOTAL               | \$1,276,000 |

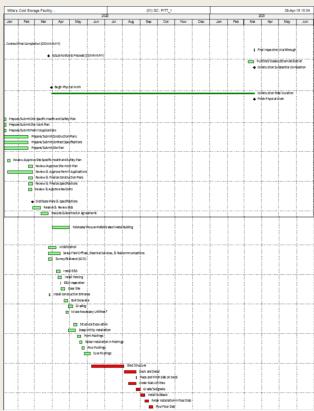
## Phase 1: Cost Estimate



| ITEM                          | COST      |                                 |
|-------------------------------|-----------|---------------------------------|
| PARKING LOT                   | \$72,000  |                                 |
| FOUNDATIONS & SLAB            | \$109,000 | TOTAL COST: \$1,276,000         |
| STRUCTURAL STEEL              | \$27,000  |                                 |
| GREEN ROOF (w/ TANK)          | \$100,000 | Assuming Guaranteed             |
| UTILITIES/TIE INS             | \$66,000  | Maximum Price (GMP)<br>contract |
| FINISHES                      | \$413,000 |                                 |
| GENERAL CONDITIONS & OVERHEAD | \$450,000 |                                 |
| RISK CONTINGENCY              | \$43,500  |                                 |



# **Risk Contingency Plan**


| Risk # | What can go wrong                | Probability | Estimated Cost | Contingency | Can we prevent it? | Plan                                                                                                                                                                     |
|--------|----------------------------------|-------------|----------------|-------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | Inclement Weather                | 40%         | \$5,000.00     | \$2,000.00  |                    | Work overtime or crash schedule. Schedule any<br>concrete pours or temperature dependent activities<br>through warm months                                               |
| 2      | Delay due to Equipment Malfuncti | 30%         | \$6,000.00     | \$1,800.00  | No                 | Have mechanic on call. Try and schedule alternate activities if delayed on specific activity.                                                                            |
| 3      | Shipping & Supply delays         | 20%         | \$2,000.00     | \$400.00    |                    | Make sure all material orders are placed in advance<br>and all calculations are triple checked. Prepare<br>storage area in advance to accommodate any<br>critical pieces |

- Total risk contingency = **\$43,500** 
  - Total risk contingency = 3.4% of project value

# **Project Schedule**



- Notice to proceed: March 25th, 2020
- Completed: March 19th, 2021
- Construction duration: 12 months
- Possible delays:
  - Inclement weather conditions
  - Subcontractor delays
  - Unforeseen utility delays
  - Long lead times for materials





# MILESTONES AND KEY TASKS

| Milestone/Key Task               | Date                    |
|----------------------------------|-------------------------|
| Submit and Approve GMP           | Jan 6, 2020             |
| Mobilization and Ground Breaking | Mar 25, 2020            |
| Pour Footings                    | May 22, 2020            |
| Erect Structure                  | July 8 – Aug 3, 2020    |
| Pour Slab on Grade               | Sept 16 – Sept 22, 2020 |
| Exterior Enclosure               | Sept 23 - Oct 28, 2020  |
| Rough-in and Finishes            | Oct 9 – Jan 29, 2021    |
| Punchlist                        | Mar 8, 2021             |
| Turnover                         | Mar 19, 2021            |

# Outline



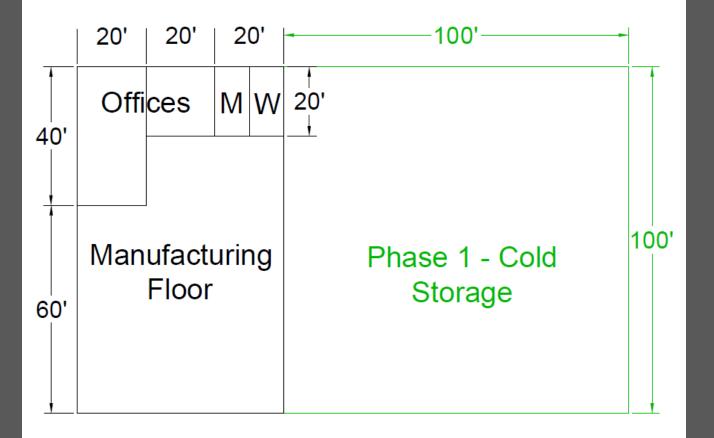
- Client: Millie's
- Conceptual Design
- Identifying Facility Location
- Phase 1: Cold Storage Facilities
  - Foundation Design
  - Parking Lot Design
  - Structural Design
  - Environmental Design
  - Estimate/Schedule
  - <u>Health and Safety Plan</u>
- Phase 2: Manufacturing Facility
- Summary

# Health and Safety Plan



- Homestead Police 1.1 miles
- Fire Department 1.3 miles
- UPMC Mercy Hospital 6.4 miles

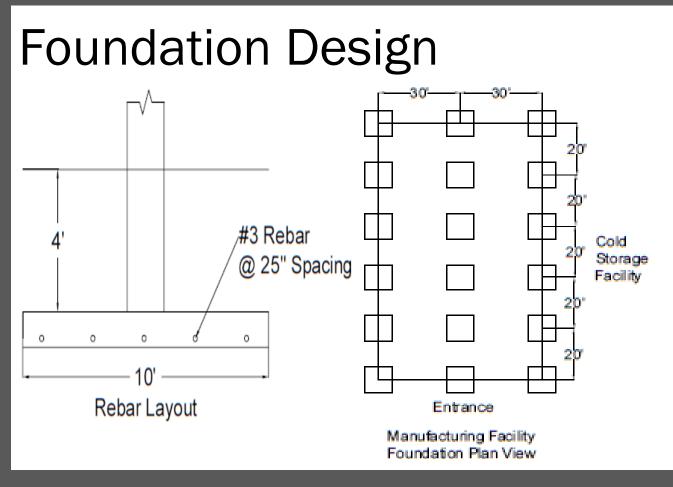







# Outline




- Client: Millie's
- Conceptual Design
- Identifying Facility Location
- Phase 1: Cold Storage Facilities
  - Foundation Design
  - Parking Lot Design
  - Structural Design
  - Environmental Design
  - Estimate/Schedule
  - Health and Safety Plan
- <u>Phase 2: Manufacturing Facility</u>
- Summary





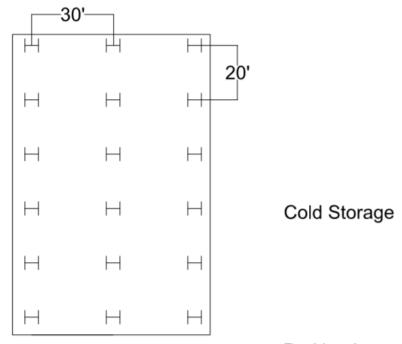
# Foundation Design

| Manufacturing Foundation Summary |                   |  |  |  |
|----------------------------------|-------------------|--|--|--|
| Axial Load                       | 90 k              |  |  |  |
| Strong Moment                    | 190 k-ft          |  |  |  |
| Weak Moment                      | 38 k-ft           |  |  |  |
| Reinforcement                    | #3 @25 in spacing |  |  |  |
| Primary Consolidation            | 0.88 in           |  |  |  |
| Elastic                          | 0.01 in           |  |  |  |
| Total Settlement                 | 0.89 in           |  |  |  |
| Width                            | 10 ft             |  |  |  |



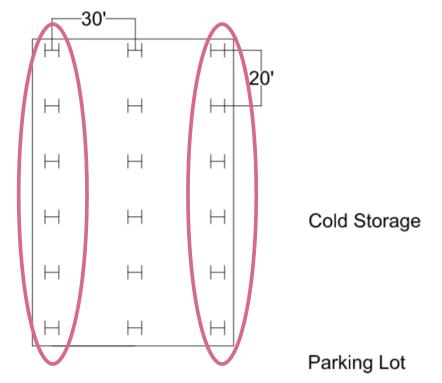
#### Loadings




ASCE 7-10 used to determine loadings:

- Dead load 71 psf
- Snow load 17.5 psf
- Wind load 27 psf
- Seismic load 1.2 psf

LRFD load cases:


- 1.4D = 100 psf
- $1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R) = 94 \text{ psf}$
- $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W) = 127 \text{ psf}$
- $1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R) = 121 \text{ psf}$
- 1.2D + 1.0E + L + 0.2S = 90 psf
- 0.9D + 1.0W = 91 psf
- 0.9D + 1.0E = 65 psf

#### **Column Layout**



Parking Lot

#### **Exterior Columns**

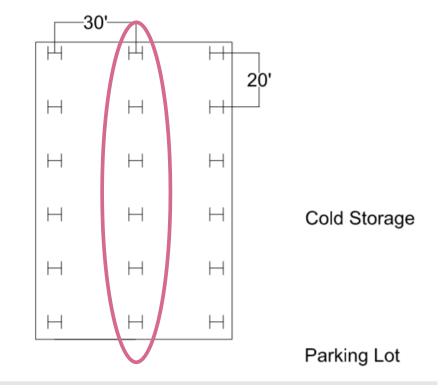




#### Exterior Column Design

#### **Design parameters**

- Axial Load: 43 k
- Bending Moment (X): 200 k-ft
- Bending Moment (Y): 11.4 k-ft
- Unbraced Length: 15 ft


W14x53 member selected per AISC

- Axial Compressive Strength: 369 k
- Bending Strength (X): 261 k-ft
- Bending Strength (Y): 58.5 k-ft

Flexural and bending capacity check

• =.91<1----0K

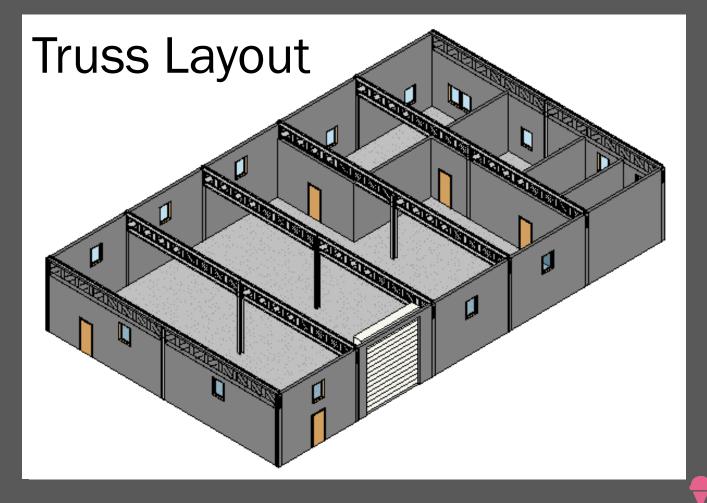
#### **Interior Columns**



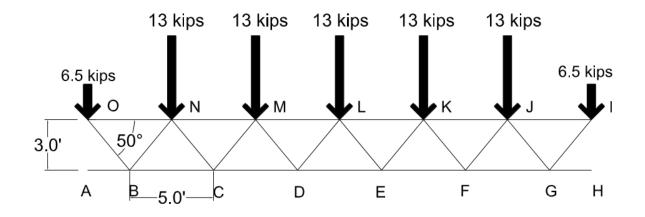
# Interior Column Design



**Design parameters** 


- Axial Load: 90 k
- Bending Moment (X): 0 k-ft
- Bending Moment (Y): 23 k-ft
- Unbraced Length: 15 ft

W10x33 member selected per AISC

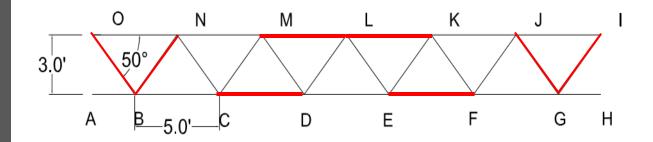

- Axial Compressive Strength: 295 k
- Bending Strength (X): 119 k-ft
- Bending Strength (Y): 38 k-ft

Flexural and bending capacity check

•=0.54<1----OK



#### **Truss Design**

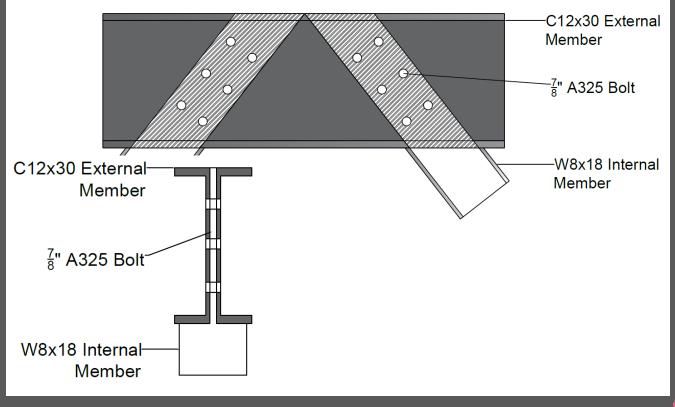



### Truss Internal Loadings

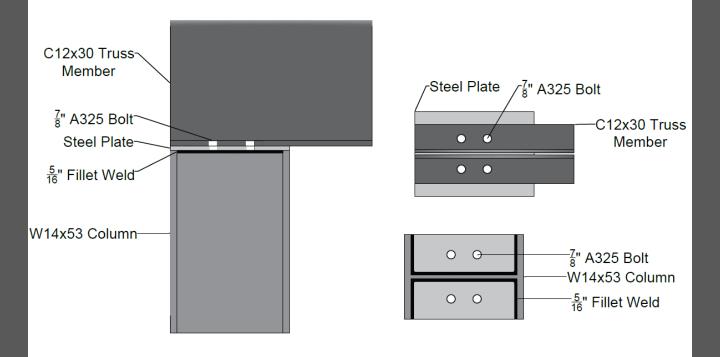


| Member | Load (k) | T or C |
|--------|----------|--------|
| AB     | 4.1      | Т      |
| BO     | 161      | С      |
| ON     | 107      | Т      |
| BN     | 161      | Т      |
| BC     | 202      | С      |
| NC     | 144      | С      |
| NM     | 302      | т      |
| СМ     | 144      | т      |
| CD     | 386      | С      |
| MD     | 127      | С      |
| ML     | 475      | Т      |
| DL     | 127      | Т      |

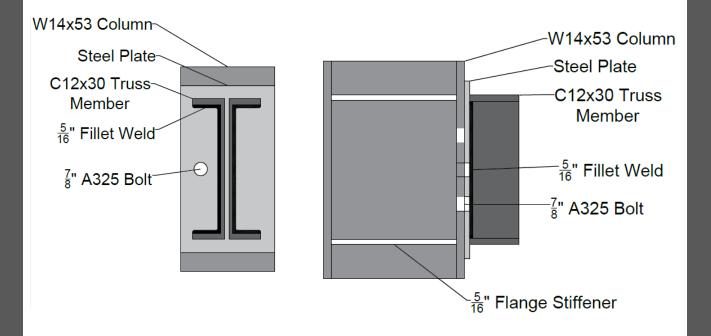
#### **Maximum Load Members**

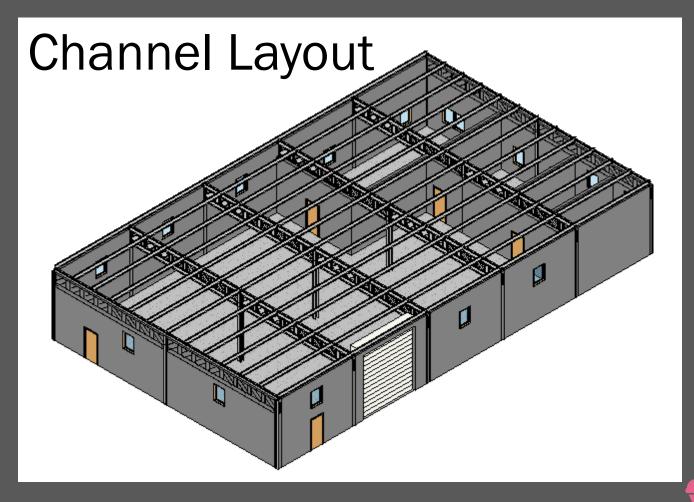




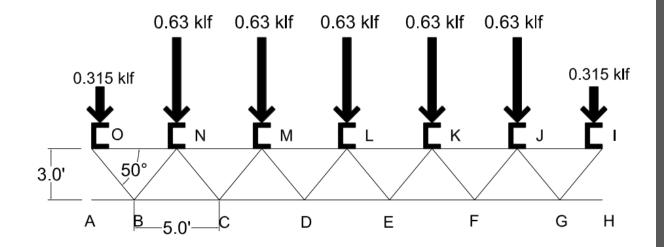


#### **Member Selection**

| Truss Member              | Maximum Force | Member<br>Selection |
|---------------------------|---------------|---------------------|
| Horizontal<br>Tension     | 476 k         | 2C12x30             |
| Horizontal<br>Compression | 386 k         | 2C12x30             |
| Diagonal<br>Tension       | 161 k         | W8x18               |
| Diagonal<br>Compression   | 161 k         | W8x18               |


#### **Internal Truss Connection**




#### **External Truss Connection**




#### **External Truss Connection**





#### Channel Design



# Channel Design



Design parameters

- Span Length: 20 ft
- Channel Spacing: 5 ft
- Unbraced Length: 0 ft
- Design Moment: 33 k-ft
- Design Shear: 6.6 k

C10x15.3 member selected per AISC

# Green Roof Design



- Will contain the same layers as the green roof on storage facility
  - Despite no water being stored, filtration layer is still required
- 6,000 ft<sup>2</sup> of coverage
- Continuation of existing parapet from storage facility
   Roof access is still provided from storage facility



# **Storage Calculations**

- Water use per capita is 40 gallons a day for industrial uses
  - Designed for 30 employees
- Average water use is 1,200 gallons per day
   A safety factor of 1.25 is used
- Total monthly usage of 37,200 gallons a month
- Surface area of manufacturing facility is 6000 ft<sup>2</sup>
  - The current size of the manufacturing facility will not provide adequate water for storage

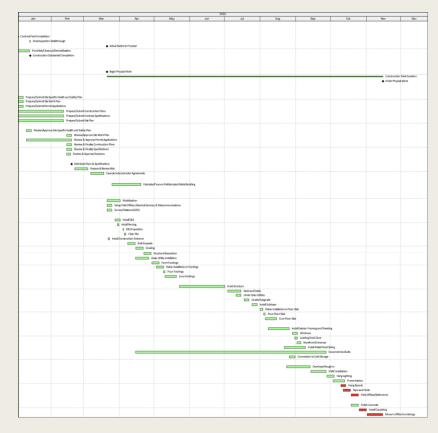


### Phase 2: Cost Estimate

• Used the RSMeans Building Construction Cost Data

| ITEM             | COST      |
|------------------|-----------|
| COST/SF          | \$105/SF  |
| STORAGE FREEZERS | \$0       |
| GREEN ROOF       | \$55,000  |
| TOTAL            | \$632,000 |

#### Phase 2: Cost Estimate




| ITEM                             | COST      |                                               |
|----------------------------------|-----------|-----------------------------------------------|
| FOUNDATIONS & SLAB               | \$59,000  |                                               |
| STRUCTURAL STEEL                 | \$13,000  | TOTAL COST: \$632,000                         |
| FINISHES                         | \$95,000  | <ul> <li>Assuming</li> </ul>                  |
| UTILITIES/TIE INS                | \$45,000  | Guaranteed<br>Maximum Price<br>(GMP) contract |
| GREEN ROOF                       | \$55,000  |                                               |
| OVERHEAD & GENERAL<br>CONDITIONS | \$339,000 |                                               |
| RISK CONTINGENCY                 | \$24,000  |                                               |

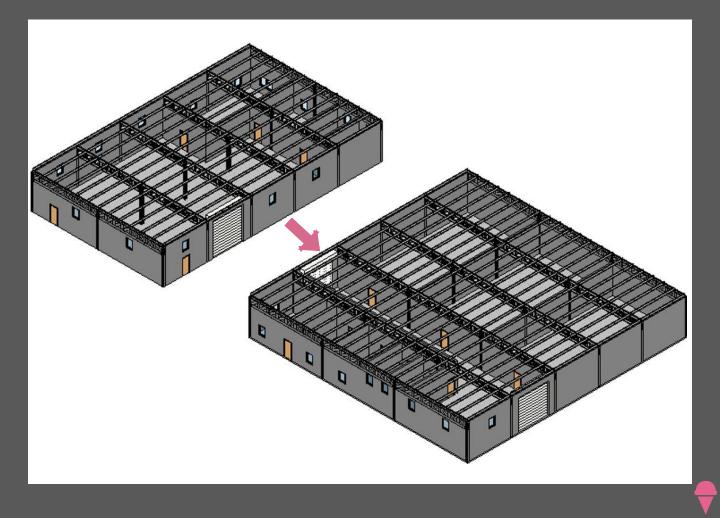
#### Phase 2: Schedule



- Notice to proceed: March 21, 2022
- Completed: December 5, 2022
- Total construction duration: ~8 mo.






#### MILESTONES AND KEY TASKS

| Milestone/Key Task               | Date                  |
|----------------------------------|-----------------------|
| Submit and Approve GMP           | Jan 3, 2022           |
| Mobilization and Ground Breaking | Mar 21, 2022          |
| Pour Footings                    | May 9, 2022           |
| Erect Structure                  | May 23 – July 1, 2022 |
| Pour Slab on Grade               | Aug 4 - 5, 2022       |
| Exterior Enclosure               | Aug 8 - 26, 2022      |
| Rough-in and Finishes            | Aug 24 – Oct 25, 2022 |
| Punchlist                        | Dec 2, 2022           |
| Turnover                         | Dec 5, 2022           |

### Outline



- Client: Millie's
- Conceptual Design
- Identification Facility Location
- Phase 1: Cold Storage Facilities
  - Foundation Design
  - Parking Lot Design
  - Structural Design
  - Environmental Design
  - Estimate/Schedule
  - Health and Safety Plan
- Phase 2: Manufacturing Facility
- <u>Summary</u>





# Special thanks to...

Professor John Sebastian Dr. David Sanchez Dr. Kent Harries Dr. Andrew Bunger Dr. Leonard Casson Dr. Steven Sachs Dr. Julie Vandenbossche Dr. John Oyler Dr. Max Stephens Professor Werner Loehlein Professor Jason Esser Lauren Townsend, Millie's Owner Nate Martin, Mascaro Bill Charles, Mascaro



# THANK YOU Questions?