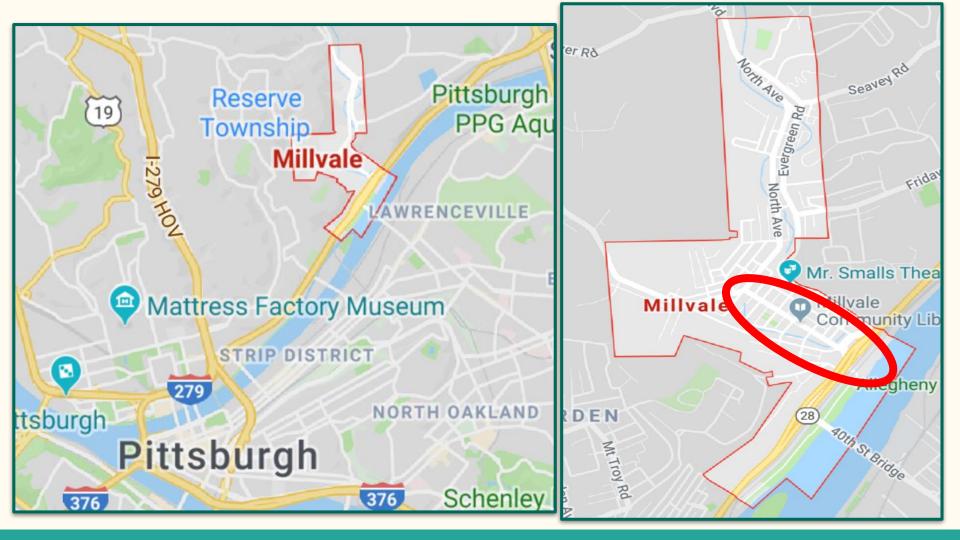
Girty's Run Flood Control Alternatives Analysis

Team: RRDA Consulting 4/15/19

Our Team

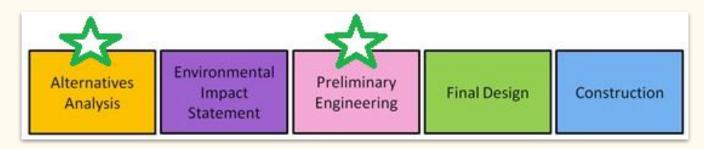
- Benjamin Grunauer
- Luke Piotrowicz
- Kaylie Jones
- Robert Cornwall
- Angela Urban
- Liam Gillen-Hughes
- Nick Panchik
- Dylan Margolis

- \rightarrow Water Resources
- \rightarrow Water Resources
- \rightarrow Environmental
- \rightarrow Transportation
- \rightarrow Transportation
- → Geotechnical
- \rightarrow Construction Management
- → Construction Management


Agenda

- Problem Statement
- Approach & Project Scope
- Watershed Study & Overview
- Alternatives Analysis
- Recommendations
- Summary
- Q&A

What's the Problem?



Event/Date	Description		
1930s-40s	Major Flooding		
1936	21' above flood stage		
1937	~10' above flood stage		
1972	7 day rainfall; Allegheny River back-		
	up		
1973-74	Army Corps "flood control project"		
2004	100-year hurricane		
2007	25-year storm 2-hour rainfall		
	Army Corps dredging of Girty's Run		
2018	12 day rainfall > 0.01"		

Girty's Run Watershed Ordinances

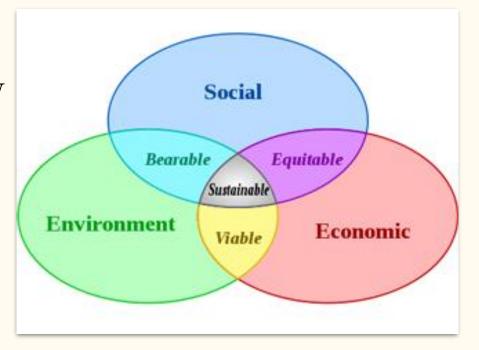
- Millvale's Annual Budget
 - \circ \$2,000 towards stormwater management
 - \circ \$50,000 towards engineering
- Millvale 2015 Floodplain Ordinance
 - $\circ~$ Restricts new construction in the flood plain
- Upstream Stormwater Ordinances
 - Ross & Shaler Townships
 - $\circ~$ New developments must collect 110% of rainwater

Approach & Project Scope

<u>Client: Girty's Run Watershed Association & Millvale</u> <u>Community</u>

- Watershed Study
 - Hydrology, Water Resources, & Hydraulics
- Alternatives Analysis
 - Via discussions, research, meetings, & field visits
 - Preliminary Engineering and Design
- Summary Report & Recommendations

Alternatives Analysis Criteria


Evaluated alternatives based on:

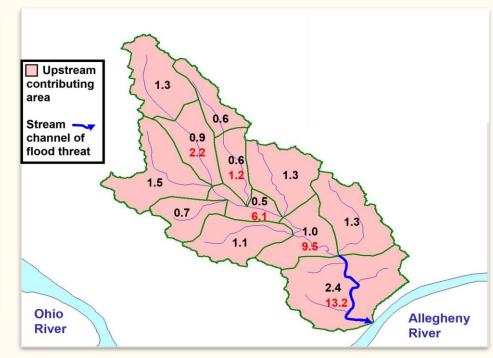
- Project Cost
- Public Approval
- Constructability
- Maintenance & Risk
- Flood Mitigation
- Sustainability

Incorporating Sustainability

- Three pillars of Sustainability
 - \circ Environmental
 - Social
 - Economic

Watershed Study & Overview

Girty's Run & Tributaries


Girty's Run Watershed

Total Watershed Drainage Area (mi ²)	13.2
Mean Annual Precipitation (in)	38
Mean Annual Temperature (°F)	51

Land Cover	
Open Water	0.03%
Low Intensity Residential	27.09%
Commercial	13.26%
Decidious Forest	21.36%
Evergreen Forest	0.07%
Mixed Forest	0.08%
Urban Development	38.11%

Focus: Millvale is in flood threatened area

 ${\sim}75\%$ of watershed is built-up and impervious

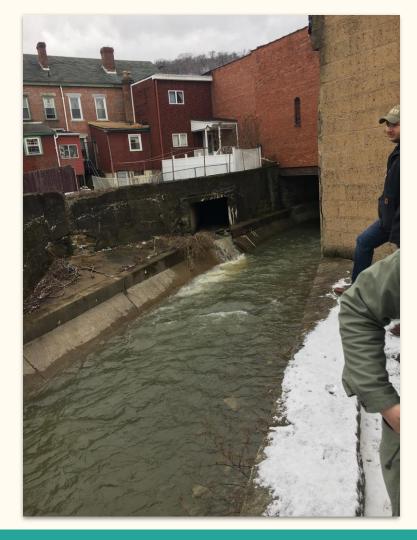
Topography of Millvale Area

- Highest point: 910 ft msl
- Downtown Millvale: 700 ft msl
- Deep Valley
- Steep Walls
- Vulnerable Position
- Upstream conditions are similar

*Contour Density Map created with ArcGIS

Watershed Soil Conditions

- Numerous types of soil
- 75% of applicable area was rated:
 - \circ Poor drainage conditions
 - \circ Susceptible to erosion
 - \circ Weak loading capability
- Complications for earthmoving activities
 - Projects would need a foreign source



Field Investigations

- Surveyed channel surroundings
- Evaluated channel conditions
- Gathered public opinion from businesses and residents

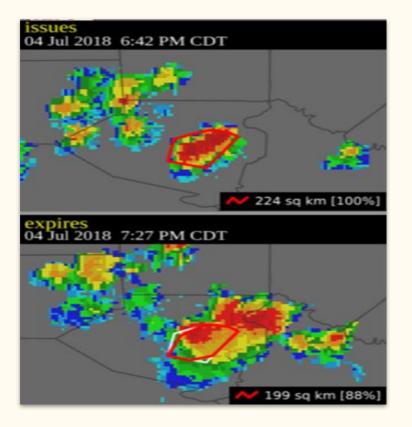
Multiple investigations during late January & early February

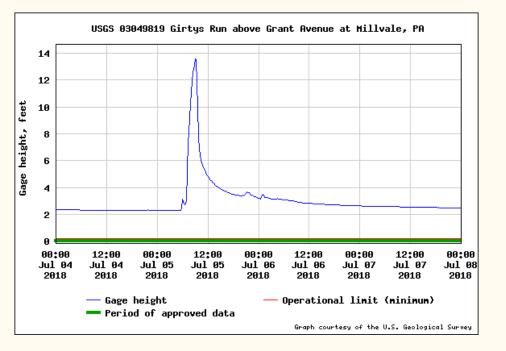
Right: Example of channel emerging from under buildings

Top: Beginning of Girty's Run ${\sim}6\mathrm{mi}$ upstream

Right: Girty's Run outlet into Allegheny River

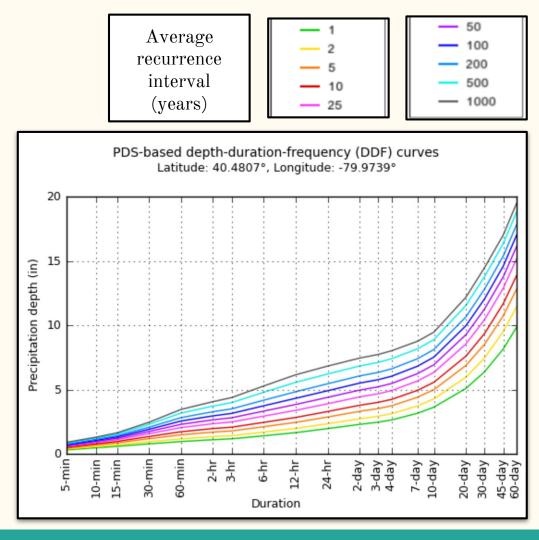
Left: Channel section through Millvale


Right: Failed wall in channel


Girty's Run & Millvale

- Sewer/Storm Outfalls (Green Circles)
 - $\circ~5$ surveyed in central Millvale
 - 563 total in Girty's Run Watershed
- Green Stormwater Infrastructure
 - 39 Rain Barrels
 - 2 Water Cisterns (Blue Boxes)
 - 2 Major Rain Gardens
 - 2 Major Bioswales

Recent Media Attention: July 4th-5th, 2018 Storm

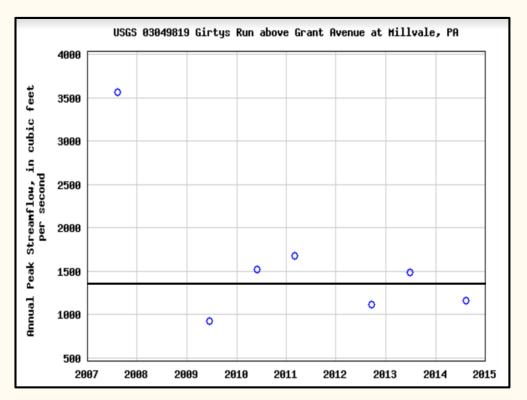


- Storm cells can be isolated and amorphous
- Flash flooding occurred in Millvale

Storm Data

- Limited precipitation data
 - No reliable rain gages within the watershed
 - RADAR only
- Area is particularly sensitive

 Storm curve density
- Increased intensity over time due to climate variability
 - \circ 2018 record rainfall


Girty's Run Stage & Flow

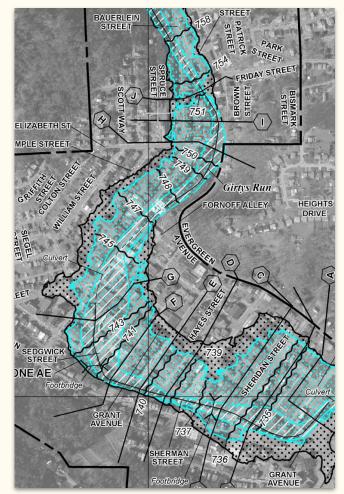
- Staff gauge begins at the bottom of the channel (1.5 ft below streambed)
 - Gauge height is indicative to "levels of action"
 - Different from the exact water height
 - Grant Avenue Bridge
 - Right after Route 28 interchange

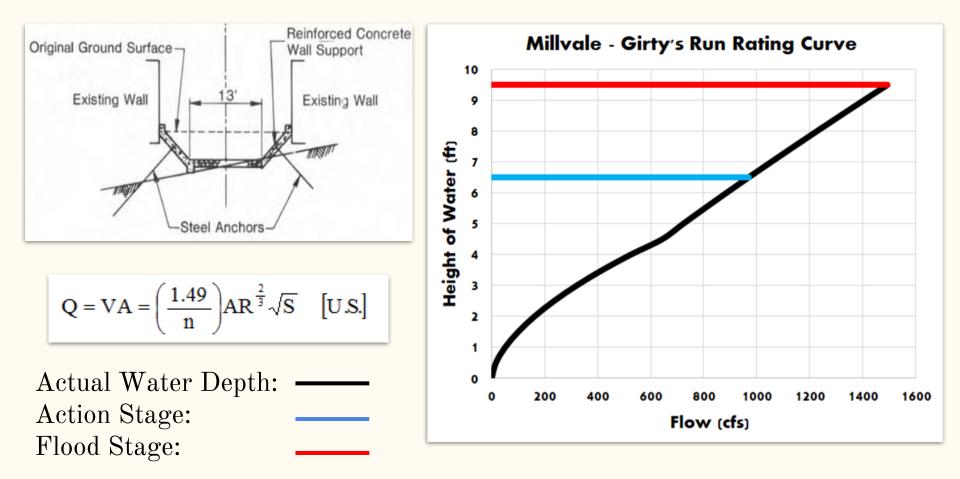
Girty's Run Gauge Height:	8 ft	11 ft	14 ft	18 ft
Flooding Stage:	Action Stage	Flood Stage	Moderate Flood Stage	Major Flood Stage
Flow Rate:	N/A	1400 cfs	2400 cfs	3500 cfs

Storms & Flooding

- Girty's Run overflows at 1400 cfs
 - (BLACK LINE see figure)
- Overflows have occurred almost yearly within the past decade

Storms of concern


Short duration, high intensity


Ex: 2.5" over 1 hour

Typical Channel & Floodplain

- Composite Trapezoidal & Rectangular Channel
- 1.75 miles through Millvale
- Width: 25 ft | Height: 11 ft
 - Negligible refuse
 - In-Situ average of 1.5ft of sediment & rock
 - Reduces cross section accounted for in hydraulic analysis
- Channel Roughness: 0.041 (Manning's Coefficient)
- Channel Slope: **41 ft per mile** (Elevation Change)

(Derived from Army Corps, USGS, & Field Survey)

Current Conditions

Current Conditions

- Channel improvement completion (1980)
 - Deepened channel
 - Added gabions
- With no action
 - Channel Walls Failing
 - Channel continuously filling with sediment
- Decreased capacity of channel
 - Increased severity of floods
 - \circ Increased frequency of floods

No Action

Damages, Cleanup, & Economic Analysis

Cost Analysis completed based on Army Corps' Report

- 100 year flood event
 - Hurricane Ivan (2004)
 - Estimated cost of \$14.3 million
 - About 400 private homes affected
 - About 200 businesses affected
- 25 year flood event
 - \circ $\,$ Estimated Cost 7.8 million
- Average Annual Damages in Millvale is \$1.94 million

Alternatives Analysis

Alternatives

- 1. Upstream Detention Basin
- 2. Channel Widening
- 3. Diversion Channel
- 4. Full Channel Dredging
- 5. Reservoir/Dam Structure
- 6. Maintenance & Management Plan Upgrades
- 7. Green Street Initiatives

Alternatives

- **1. Upstream Detention Basin**
- 2. Channel Widening
- 3. Diversion Channel
- 4. Full Channel Dredging
- 5. Reservoir/Dam Structure
- 6. Maintenance & Management Plan Upgrades
- 7. Green Street Initiatives

- Ross & Shaler Townships, North Hills Area
- Detention Pond(s) near Babcock Blvd
 - \circ Large singular or series of system(s)
 - Contains critical points near Girty's run
- Presence of large cliffs
 - \circ Excess of 70 feet
 - \circ $\;$ Not feasible to place detention ponds

- Ross Township has a new land development plan
 - \circ 6 miles upstream of Millvale
 - Roughly 7.2 acres of development

- Designing in accordance with the Pennsylvania Stormwater BMP Manual
 - \circ Using the rational formula
 - \circ 2 year storm event

$$Q_{Post} = (1.18 \text{ in/hr})^*(0.9)^*(7.2 \text{ acres}) - Q_{Pre}$$

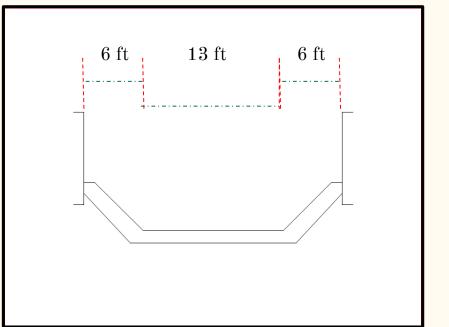
 $Q_{Post} = 6 \ cfs$


• Impactful peak discharge reduction requires much larger catchment area

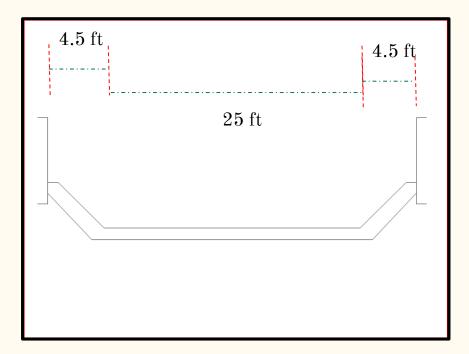
Q = C i A

- Q = Peak runoff rate (cubic feet/sec)
- i = Rainfall intensity (inches/hour)
- A = Area in acres
- C = Runoff coefficient (dependent on surface type)

- Using entire stream segment of 1.3 mi²
- $Q_{Post} = (1.18 \text{ in/hr})^*(0.6)^*(832 \text{ acres})$ \circ 590 cfs
 - \circ 25% reduction
- Issue to acquire land
- USDA rated soil conditions poorly for development
- Millvale is prone to isolated high intensity storms
 - Missing catchment area
- Total Cost Estimate: \$1.6 Million


Alternatives

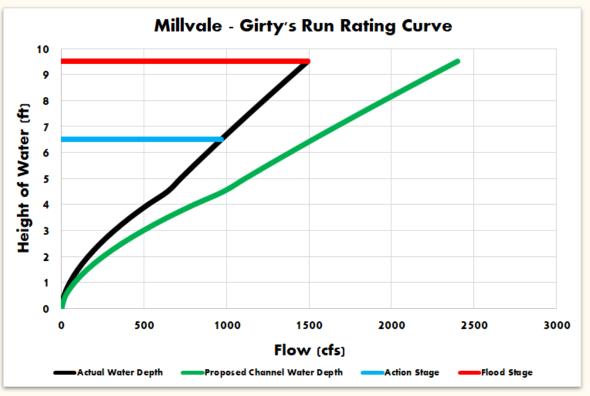
- 1. Upstream Detention Basin
- 2. Channel Widening
- 3. Diversion Channel
- 4. Full Channel Dredging
- 5. Reservoir/Dam Structure
- 6. Maintenance & Management Plan Upgrades
- 7. Green Street Initiatives


Channel Widening

- Used Manning's Equation to design new channel width
 - Capacity of 2,400 cfs (moderate flood stage)
 - Same Water Depth of 9.5 ft
- Calculated a new width of 34 ft
 - \circ Average 9 ft increase in width throughout Millvale
- Channel shape remains same
 - Trapezoidal and rectangular

Improved Channel Design (1980)

Proposed Design



Total Width = 25 ft

Total Width = 34 ft

Hydraulics of Widened Channel

- Flood Stage (9.5ft)
 - \circ Before: 1400 cfs
 - \circ After: 2400 cfs
 - 71% Increase
- Action Stage (6.5 ft)
 - \circ Before: 1000 cfs
 - \circ After: 1500 cfs
 - **50%** increase

Channel Widening Cost Analysis

- Required Property Acquisition

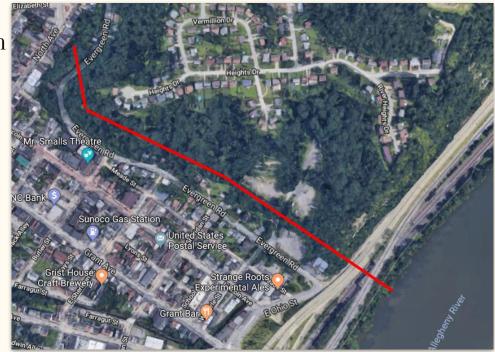
 Total: \$8 Million to purchase necessary properties
- Culvert Widening
 - 12 culverts would need to be widened along the channel
 - Similar PennDOT projects cost about \$850,000 per culvert
 - Total: **\$10.2 Million**

- Approximately 1,200 ft underground
 - \circ Road reconstruction cost

estimated at \$125,000

- Cost of earth work **\$3 Million**
- Total Cost: \$21 Million
 - Using the Average Annual damages of \$1.94 million

Channel Widening


- Future Work
 - Utility Relocation
 - Negatively Impact Millvale during construction
 - Construction would be lengthy
 - Many roadways would be closed during construction
 - Public opinion
 - Eminent Domain

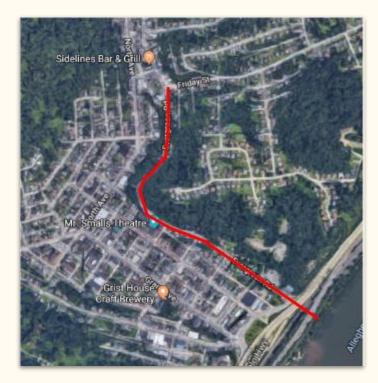
Alternatives

- 1. Upstream Detention Basin
- 2. Channel Widening
- **3. Diversion Channel**
- 4. Full Channel Dredging
- 5. Reservoir/Dam Structure
- 6. Maintenance & Management Plan Upgrades
- 7. Green Street Initiatives

Diversion Channel

- Location(NE Border along Evergreen Rd): Pictured
 - Channel is located in open wooded area
 - Property purchases are minimal
- Channel Design
 - Additional Capacity: 1,000 cfs
 - \circ 9 ft wide
 - \circ 9.5 ft deep
 - \circ 2,400 ft long
 - Concrete walls

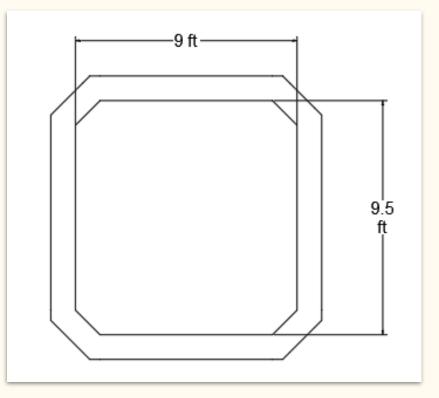
Diversion Channel


- Topography Concern
 - Construction of the channel would require extreme earthwork
 - Slope stability concerns erosive soil
 - Elevation along hillside ranges from 800 to 910 ft
 - \circ $\,$ Ideal elevation for diversion channel is 745 ft $\,$

Box Culvert Diversion Channel

- Specifications
 - Under Evergreen Rd at the same elevation of the existing channel
 - \circ 9 ft wide by 9.5 ft deep
 - \circ 3,200 ft in length
- Constructability concerns
 - Excavation of a minimum of 55 ft of soil
 - Highway Closure

Box Culvert Diversion Channel Cost


Road Demolition - \$320,000

Excavation and Backfill- \$53 million

Box Culvert - \$5.4 million

Road Construction - \$2.5 million

TOTAL COST - \$61.2 million

Alternatives

- 1. Upstream Detention Basin
- 2. Channel Widening
- 3. Diversion Channel
- 4. Full Channel Dredging
- 5. Reservoir/Dam Structure
- 6. Maintenance & Management Plan Upgrades
- 7. Green Street Initiatives

Full Channel Dredging

- Methods
 - Cutterhead pipeline dredges
 - Mechanical dredges
- Resulting in increased channel capacity
 - Average of 2.5 feet of sediment build up
 - Stage height increase of 1.5 feet
 - Additional 350 cfs of capacity during flood stage

Breakdown of Dredging Costs

Extent of Dredging	Volume of Silt (ft ³)	Dredging	Dewatering/Disposal	Cost
Entire Channel	45,000	\$1,900,000	\$100,000	\$2,000,000
Upstream Half	18,650	\$650,000	\$40,000	\$690,000
Downstream Half	26,250	\$900,000	\$50,000	\$950,000

*Based on a complete dredging of the channel performed in 2007

Alternatives

- 1. Upstream Detention Basin
- 2. Channel Widening
- 3. Diversion Channel
- 4. Full Channel Dredging
- 5. Reservoir/Dam Structure
- 6. Maintenance & Management Plan Upgrades
- 7. Green Street Initiatives

Reservoir/Dam Structure

- Designed by Army Corps of Engineers in 1970
 - Location: Intersection of Evergreen Rd and Babcock Blvd
 - Height: 115 ft Length: 1000 ft
 - Earthen Dam
 - Create a lake of 100 acres
 - Providing 3140 ac-ft of Storage
 - Provide flood mitigation
- Issues
 - Residences and commercial structures
 - Highway relocation

Alternatives

- 1. Upstream Detention Basin
- 2. Channel Widening
- 3. Diversion Channel
- 4. Full Channel Dredging
- 5. Reservoir/Dam Structure
- 6. Maintenance & Management Plan Upgrades
- 7. Green Street Initiatives

Maintenance & Management Plan Upgrades

Comprehensive Watershed Survey

- Numerous field surveys with equipment
- Additional rain gauge implementation

Annual Emergency **Maintenance** Management Plan Localized Upgraded Dredging warning system Routine channel Flood detour structure route inspections and repairs

Upgraded Flood Warning System Plan

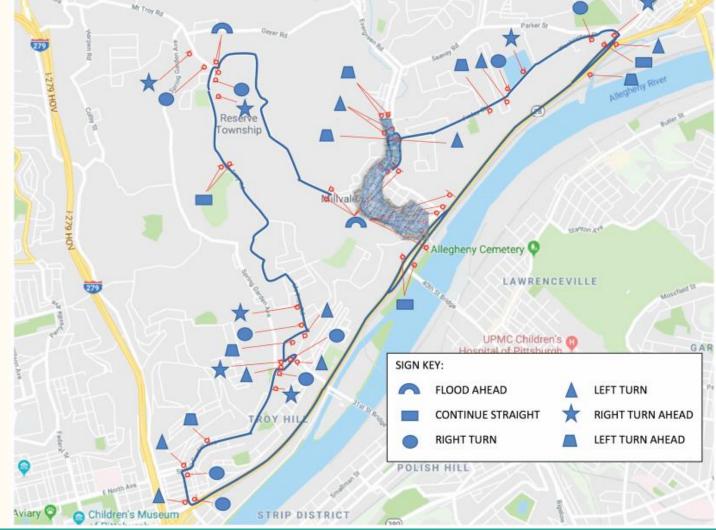
- Siren System already in place
 - One Siren use precautions
 - \circ $\;$ Two Sirens floods occuring
- Connect system to staff gauge and send warnings to locations (0.5 ft prior)
 - \circ Continuous staff gauge sensor

Gauge Height (ft)	11	15.8	16	18	18.6	21
Water Location	Gazebo Garden	Lincoln Ave	Grant St bridge deck	top of staff gauge	upper parking lot	line on Grant St (Hurricane Ivan)

Flood Detour

- Allow safe travels around Millvale
- Sign Type
 - Variable
 - Temporary
 - Signs placed during emergency management plan

ACTIVE FLOOD DETOUR

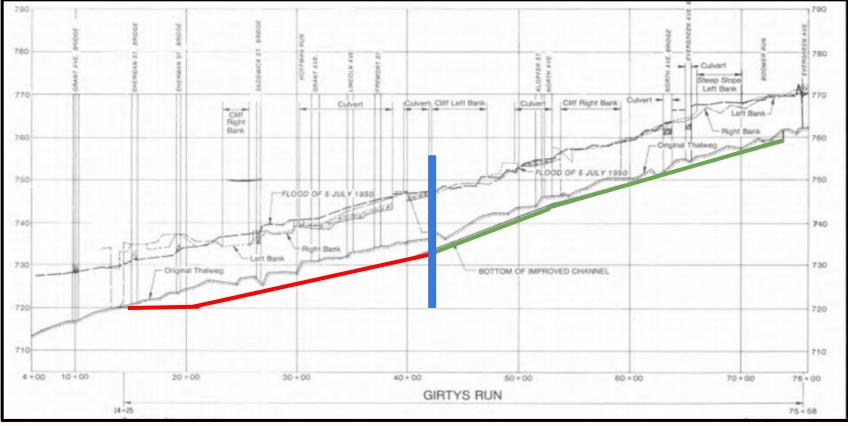

ROAD FLOODED AHEAD

Trip Duration

22 min - 35 min

 Depending
 on time of
 day

Repairs


• Field Identified areas of concern

Localized Dredging

- Target heavy sediment areas to reduce buildup
 - Bypasses maneuvering costs

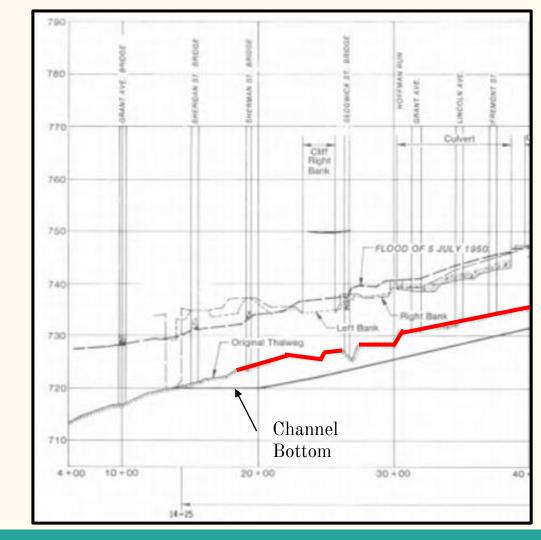

Upstream

• From Evergreen Ave to 50 ft before Freemont St

• 18,750 ft^3 of silt accumulated

• Average silt build-up of 1 ft

• Several areas warrant concern


Downstream

• 20 ft before Freemont St to Sheridan St

• 26,250 ft^3 of silt accumulated

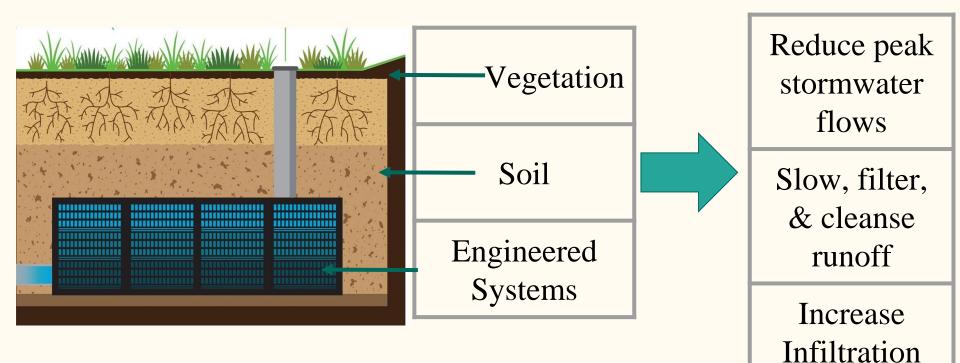
• Average silt build-up of 2 ft

• Primary target for dredging

Maintenance & Management Plan Budget

- One time
 - \circ Signs Total Cost of \$3,900
 - \circ $\,$ Watershed survey \$1,000 $\,$
 - Gauge sensor \$4,000
- Recurring
 - Dredging
 - 2,500 cu ft per year
 - **\$140,000**
 - \circ Repairs
 - \$2,000 to fix 100 sq ft area
 - \circ Inspection
 - **\$1,000**
- Total Annual Budget: \$143,000 per year

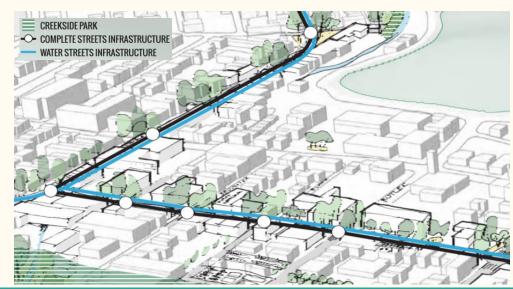
Alternatives


- 1. Upstream Detention Basin
- 2. Channel Widening
- 3. Diversion Channel
- 4. Full Channel Dredging
- 5. Reservoir/Dam Structure
- 6. Maintenance & Management Plan Upgrades
- 7. Green Street Initiatives

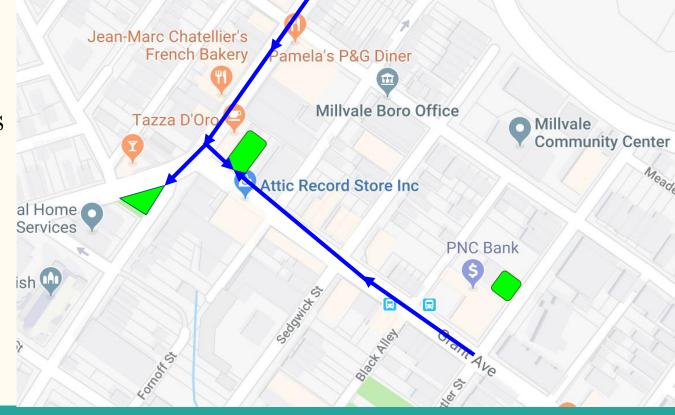
What Are Green Streets?

- Wide variety of green infrastructure:
 - \circ Street Trees
 - Rain Gardens and Bioswales
 - Permeable Pavement
- Impervious Surface Reduction
- Improved Sidewalk Drainage

What is Green Infrastructure?


Case Study: Etna Borough

- Etna Green StreetScape
 - \circ 2 Street Phases
 - \circ 1 Rain Garden
- Completed 2016-2017
- Manages ~1.25 acres of impervious surface area
- Manages 16.8 MG/yr of runoff


Millvale Green Streets Plan: 2015

- 2015 EcoDistrict Pivot Plan
- Incorporated Complete Streets, Green Stormwater Infrastructure, and Creekside Park

Green Streets

- North Ave. & Grant Ave.
- Main Business Corridor
- Existing Green Spaces

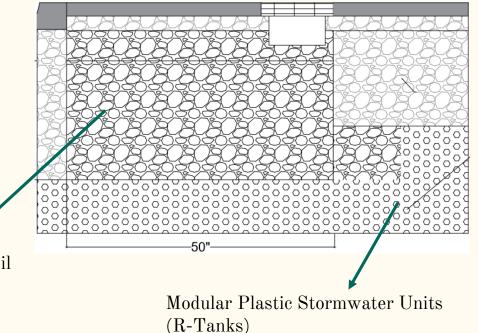
S

Current Street Conditions

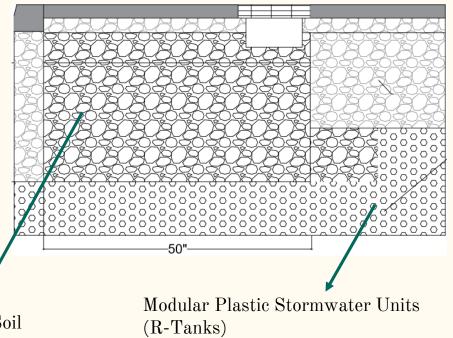
- Grant Ave:
 - Street Width = 32 ft
 - \circ Sidewalk Width = 9 ft
- North Ave:
 - \circ Street Width = 32.5 ft
 - \circ Sidewalk Width = 9 ft
- Single Pour Concrete Sidewalks
- ADA Compliant Crosswalks

Green Streets Alternative

- Improved Sidewalk Drain Network
- Street Trees
- Downspout Disconnections
- Rain Gardens

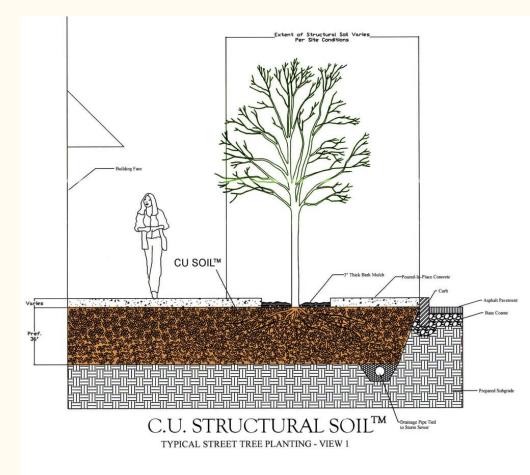


Sidewalk Drainage Cross Section

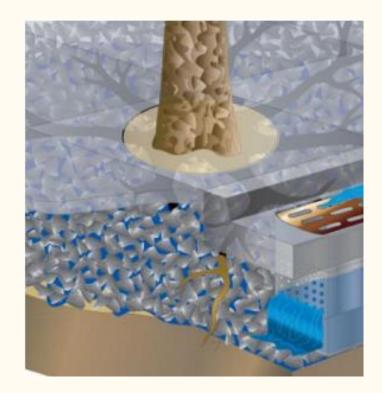

- Cross-section runs whole length
 - Drainage slope: 0.004 ft/ft
 - \circ 4 ft buffer to building facade
- Sidewalk slopes 2% to drain
- CU Structural Soil, R-Tanks, and Impermeable Geotextile Membrane

CU Structural Soil

Sidewalk Drainage Cross Section


- Total 40" Depth
 - 6" Sidewalk Layer/Drain
 Opening
 - 18" CU Structural Soil
 - 10" Bottom Stormwater Units
 - Impermeable Geotextile
 Membrane surrounding

CU Structural Soil

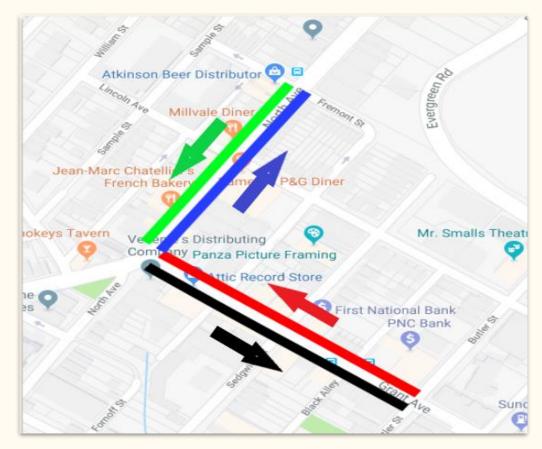

Street Trees

- Spacing Guidelines
 - \circ 25 ft from intersection
 - \circ 20 ft or more between trees
 - $\circ \ \ \, Standard \ \, Tree \ Well = \\ 4 \ ft \ x6ft$
- 40 ft between trees
- 40 Tree Wells Total

CU Structural Soil

- Gravel Soil Mix to support tree growth and provide sub-base for pavements
- Highly porous to accommodate root growth and water infiltration
- Can be compacted to meet loadbearing requirements

Rain Garden Locations

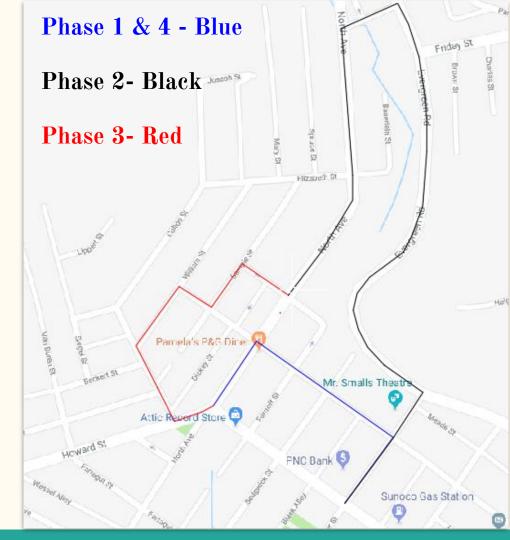


Green Street Alternative Construction

- Phase 1 (RED)
 - Westbound on Grant Ave.
- Phase 2 (BLUE)

 NorthBound on North Ave.
- Phase 3 (GREEN)
 Southbound on North
 - Ave.
- Phase 4 (BLACK)
 Eastbound on Grant Ave.

Phase Schedule


	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Side Walk Demoltion														
Excavation														
Soil Compaction														
Base Layer Modular Plastic Storage Unit Installation														
Geo-tech Fabric Installation														
Filter Stone Installation														
Top Layer Modular Plastic Storage Unit Installation														
Backfill Stone														
Form Sidewalk and Trench														
Pour Concrete Sidewalk														
Form Curb														
Pour Curb														
Float														

- Crews will work on a tight timeline completing work behind each other
- Phase Duration: 2 weeks
- Total Project Duration: 8 weeks

Detour Routes

- 2 travel lanes and 2 parking lanes
- Closed parking lane on side closest to construction
 - \circ Staging area
- Closed travel lane on side closest to construction
 - \circ Temporary walkway for pedestrians
 - $\circ \quad \text{Barrier protection} \\$

Project Estimate

Etna Green Streetscape Phase 1

• 4,776 ft² of sidewalk

- 12 street trees
- 2,300 ft³ underground storage
- 3,900 ft² pervious pavers

\$950,000

Millvale Green Streets

- 9,040 ft² of sidewalk
- 40 street trees
- 4,400 ft³ excavation and underground storage
- 2 Rain Gardens

Project Funding

- Etna Streetscape funded by...
 - PA DEP Growing Greener grant
 - PA state funds for addressing environmental concerns
 - US EPA Section 319 grant
 - Nonpoint source management program for the Clean Water Act
 - 3 Rivers Wet Weather grant
 - Non-profit environmental organization

Improving our region's water quality

Analysis Comparison

Alternatives

- 1. No Action
- 2. Upstream Detention Basin
- 3. Channel Widening
- 4. Diversion Channel
- 5. Full Channel Dredging
- 6. Reservoir/Dam Structure
- 7. Maintenance & Management Plan Upgrades
- 8. Green Street Initiatives

No.	ALTERNATIVES	Total Project Estimate	Public Approval	Constructability	Maintenance & Risk	Sustainability	Flooding Mitigation	OVERALL RANKING	2: Positive
1	No Action							7	1: Neutral
2	Upstream Detention Basin							6	0: Negative
3	Channel Widening							5	
4	Diversion Channel							8	WORST
5	Full Channel Dredging							3	
6	Reservoir & Dam							4	
7	Maintenance & Management Plan Upgrades							1	BEST
8	Green Street Initatives							2	

Recommendations

Our Top Alternatives:

- 1. Maintenance & Management Plan Upgrades
- 2. Green Street Initiatives
- 3. Full Channel Dredging

- Final Report will be submitted to GRWA & Millvale Community
- Utilize our analysis to make decisions on future projects that mitigate flooding

Thank you!

Zaheen Hussain - Millvale Sustainability Coordinator

Donna Pearson & Alexis Boytim - Girty's Run Watershed Association

John Darnley - National Weather Service

Sara Woida, Patricia Kitchen, & Joe Delucia - US Army Corps of Engineers

Werner Loehlein & John Sebastian - Faculty Mentor

Questions?

